--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-busigt2 results: [] --- # segformer-b0-finetuned-busigt2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the kasumi222/busigt5 dataset. It achieves the following results on the evaluation set: - Loss: 0.9345 - Mean Iou: 0.2296 - Mean Accuracy: 0.3908 - Overall Accuracy: 0.3978 - Per Category Iou: [0.0, 0.3674785422564665, 0.32138792265751265] - Per Category Accuracy: [nan, 0.43273323064546193, 0.34877217945992856] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00013 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------:|:-----------------------------------------------:| | 0.813 | 0.61 | 20 | 0.9345 | 0.2296 | 0.3908 | 0.3978 | [0.0, 0.3674785422564665, 0.32138792265751265] | [nan, 0.43273323064546193, 0.34877217945992856] | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1