--- license: other tags: - generated_from_trainer model-index: - name: segformer-b0-finetuned-busigt2 results: [] --- # segformer-b0-finetuned-busigt2 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6495 - Mean Iou: 0.1549 - Mean Accuracy: 0.2548 - Overall Accuracy: 0.2632 - Per Category Iou: [0.0, 0.2648086869349988, 0.1998372928797926] - Per Category Accuracy: [nan, 0.30456581671196054, 0.20506315591233834] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00013 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------------------------------------:|:-----------------------------------------------:| | 0.7106 | 0.61 | 20 | 0.6495 | 0.1549 | 0.2548 | 0.2632 | [0.0, 0.2648086869349988, 0.1998372928797926] | [nan, 0.30456581671196054, 0.20506315591233834] | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1