---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: kasrahabib/KM45L6V2OC
results: []
language:
- en
widget:
- text: "The START NEW PROJECT function shall allow the user to create a new project."
example_title: "Requirment 1"
- text: "The email string consists of x@x.x and is less than 31 characters in length and is not empty."
example_title: "Requirment 2"
---
# kasrahabib/KM45L6V2OC
This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2), for classifying softwrae requirments into functional (F) and Non-functional (NF) types, on Software Requirements Dataset (SWARD). It achieves the following results on the evaluation set:
- Train Loss: 0.0107
- Validation Loss: 0.0404
- Epoch: 14
- Final Macro F1-score: 0.99
Labels:
0 or F -> Functional;
1 or NF -> Non-functional;
## Usage Pipeline
```python
from transformers import pipeline
frame_work = 'tf'
task = 'text-classification'
model_ckpt = 'kasrahabib/KM45L6V2OC'
software_requirment_cls = pipeline(task = task, model = model_ckpt, framework = frame_work)
example_1_f = 'The START NEW PROJECT function shall allow the user to create a new project.'
example_2_nf = 'The email string consists of x@x.x and is less than 31 characters in length and is not empty.'
software_requirment_cls([example_1_f, example_2_nf])
```
```
[{'label': 'F', 'score': 0.9998922348022461},
{'label': 'NF', 'score': 0.999846339225769}]
```
## Model Inference:
```python
import numpy as np
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
model_ckpt = 'kasrahabib/KM45L6V2OC'
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = TFAutoModelForSequenceClassification.from_pretrained(model_ckpt)
example_1_f = 'The START NEW PROJECT function shall allow the user to create a new project.'
example_2_nf = 'The email string consists of x@x.x and is less than 31 characters in length and is not empty.'
requirements = [example_1_f, example_2_nf]
encoded_requirements = tokenizer(requirements, return_tensors = 'np', padding = 'longest')
y_pred = model(encoded_requirements).logits
classifications = np.argmax(y_pred, axis = 1)
classifications = [model.config.id2label[output] for output in classifications]
print(classifications)
```
```
['F', 'NF']
```
## Usage Locally Downloaded (e.g., GitHub):
1 - Clone the repository:
```shell
git lfs install
git clone url_of_repo
```
2 - Locate the path to the downloaded directory
3 - Write the link to the path in the ```model_ckpt``` variable
Then modify the code as below:
```python
import numpy as np
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
model_ckpt = 'rest_of_the_path/KM45L6V2OC'
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = TFAutoModelForSequenceClassification.from_pretrained(model_ckpt)
example_1_f = 'The START NEW PROJECT function shall allow the user to create a new project.'
example_2_nf = 'The email string consists of x@x.x and is less than 31 characters in length and is not empty.'
requirements = [example_1_f, example_2_nf]
encoded_requirements = tokenizer(requirements, return_tensors = 'np', padding = 'longest')
y_pred = model(encoded_requirements).logits
classifications = np.argmax(y_pred, axis = 1)
classifications = [model.config.id2label[output] for output in classifications]
print(classifications)
```
```
[{'label': 'F', 'score': 0.9998922348022461},
{'label': 'NF', 'score': 0.999846339225769}]
```
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2