Update handler.py
Browse files- handler.py +14 -12
handler.py
CHANGED
@@ -27,19 +27,23 @@ class EndpointHandler():
|
|
27 |
|
28 |
# load StableDiffusionInpaintPipeline pipeline
|
29 |
self.pipe = AutoPipelineForInpainting.from_pretrained(
|
30 |
-
"
|
31 |
-
revision="fp16",
|
32 |
torch_dtype=torch.float16,
|
33 |
)
|
34 |
# use DPMSolverMultistepScheduler
|
35 |
-
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
self.pipe = self.pipe.to(device)
|
38 |
|
39 |
-
self.pipe2 = AutoPipelineForInpainting.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
40 |
-
self.pipe2.to("cuda")
|
41 |
|
42 |
-
self.pipe3 = AutoPipelineForImage2Image.from_pipe(self.pipe2)
|
43 |
|
44 |
|
45 |
|
@@ -92,8 +96,6 @@ class EndpointHandler():
|
|
92 |
"""
|
93 |
|
94 |
#pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
95 |
-
|
96 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
97 |
|
98 |
# run inference pipeline
|
99 |
out = self.pipe(prompt=prompt, negative_prompt=negative_prompt, image=image, mask_image=mask_image)
|
@@ -103,7 +105,7 @@ class EndpointHandler():
|
|
103 |
image = out.images[0].resize((1024, 1024))
|
104 |
|
105 |
print("image resizing successful!")
|
106 |
-
|
107 |
self.pipe2.enable_xformers_memory_efficient_attention()
|
108 |
|
109 |
image = self.pipe2(
|
@@ -130,10 +132,10 @@ class EndpointHandler():
|
|
130 |
).images[0]
|
131 |
|
132 |
print("3rd pipeline part successful!")
|
133 |
-
|
134 |
|
135 |
# return first generate PIL image
|
136 |
-
return
|
137 |
|
138 |
# helper to decode input image
|
139 |
def decode_base64_image(self, image_string):
|
|
|
27 |
|
28 |
# load StableDiffusionInpaintPipeline pipeline
|
29 |
self.pipe = AutoPipelineForInpainting.from_pretrained(
|
30 |
+
"kandinsky-community/kandinsky-2-2-decoder-inpaint",
|
|
|
31 |
torch_dtype=torch.float16,
|
32 |
)
|
33 |
# use DPMSolverMultistepScheduler
|
34 |
+
# self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
|
35 |
+
|
36 |
+
self.pipe.enable_model_cpu_offload()
|
37 |
+
|
38 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
39 |
+
|
40 |
+
# move to device
|
41 |
self.pipe = self.pipe.to(device)
|
42 |
|
43 |
+
# self.pipe2 = AutoPipelineForInpainting.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
44 |
+
# self.pipe2.to("cuda")
|
45 |
|
46 |
+
# self.pipe3 = AutoPipelineForImage2Image.from_pipe(self.pipe2)
|
47 |
|
48 |
|
49 |
|
|
|
96 |
"""
|
97 |
|
98 |
#pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to("cuda")
|
|
|
|
|
99 |
|
100 |
# run inference pipeline
|
101 |
out = self.pipe(prompt=prompt, negative_prompt=negative_prompt, image=image, mask_image=mask_image)
|
|
|
105 |
image = out.images[0].resize((1024, 1024))
|
106 |
|
107 |
print("image resizing successful!")
|
108 |
+
"""
|
109 |
self.pipe2.enable_xformers_memory_efficient_attention()
|
110 |
|
111 |
image = self.pipe2(
|
|
|
132 |
).images[0]
|
133 |
|
134 |
print("3rd pipeline part successful!")
|
135 |
+
"""
|
136 |
|
137 |
# return first generate PIL image
|
138 |
+
return image
|
139 |
|
140 |
# helper to decode input image
|
141 |
def decode_base64_image(self, image_string):
|