kapilkd13 commited on
Commit
e39224e
·
1 Parent(s): d6e3f5c

Training in progress, step 200

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
Untitled.ipynb ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "85541f92",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "02/07/2022 11:34:12 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True\n",
14
+ "02/07/2022 11:34:12 - INFO - __main__ - Training/evaluation parameters TrainingArguments(\n",
15
+ "_n_gpu=1,\n",
16
+ "adafactor=False,\n",
17
+ "adam_beta1=0.9,\n",
18
+ "adam_beta2=0.999,\n",
19
+ "adam_epsilon=1e-08,\n",
20
+ "bf16=False,\n",
21
+ "bf16_full_eval=False,\n",
22
+ "dataloader_drop_last=False,\n",
23
+ "dataloader_num_workers=0,\n",
24
+ "dataloader_pin_memory=True,\n",
25
+ "ddp_bucket_cap_mb=None,\n",
26
+ "ddp_find_unused_parameters=None,\n",
27
+ "debug=[],\n",
28
+ "deepspeed=None,\n",
29
+ "disable_tqdm=False,\n",
30
+ "do_eval=True,\n",
31
+ "do_predict=False,\n",
32
+ "do_train=True,\n",
33
+ "eval_accumulation_steps=None,\n",
34
+ "eval_steps=400,\n",
35
+ "evaluation_strategy=IntervalStrategy.STEPS,\n",
36
+ "fp16=True,\n",
37
+ "fp16_backend=auto,\n",
38
+ "fp16_full_eval=False,\n",
39
+ "fp16_opt_level=O1,\n",
40
+ "gradient_accumulation_steps=1,\n",
41
+ "gradient_checkpointing=True,\n",
42
+ "greater_is_better=None,\n",
43
+ "group_by_length=True,\n",
44
+ "half_precision_backend=auto,\n",
45
+ "hub_model_id=None,\n",
46
+ "hub_strategy=HubStrategy.EVERY_SAVE,\n",
47
+ "hub_token=<HUB_TOKEN>,\n",
48
+ "ignore_data_skip=False,\n",
49
+ "label_names=None,\n",
50
+ "label_smoothing_factor=0.0,\n",
51
+ "learning_rate=0.0003,\n",
52
+ "length_column_name=input_length,\n",
53
+ "load_best_model_at_end=False,\n",
54
+ "local_rank=-1,\n",
55
+ "log_level=-1,\n",
56
+ "log_level_replica=-1,\n",
57
+ "log_on_each_node=True,\n",
58
+ "logging_dir=./runs/Feb07_11-34-12_job-7e123c9a-c8eb-4ec4-9153-164c740ace86,\n",
59
+ "logging_first_step=False,\n",
60
+ "logging_nan_inf_filter=True,\n",
61
+ "logging_steps=500,\n",
62
+ "logging_strategy=IntervalStrategy.STEPS,\n",
63
+ "lr_scheduler_type=SchedulerType.LINEAR,\n",
64
+ "max_grad_norm=1.0,\n",
65
+ "max_steps=8000,\n",
66
+ "metric_for_best_model=None,\n",
67
+ "mp_parameters=,\n",
68
+ "no_cuda=False,\n",
69
+ "num_train_epochs=3.0,\n",
70
+ "optim=OptimizerNames.ADAMW_HF,\n",
71
+ "output_dir=./,\n",
72
+ "overwrite_output_dir=True,\n",
73
+ "past_index=-1,\n",
74
+ "per_device_eval_batch_size=8,\n",
75
+ "per_device_train_batch_size=16,\n",
76
+ "prediction_loss_only=False,\n",
77
+ "push_to_hub=True,\n",
78
+ "push_to_hub_model_id=None,\n",
79
+ "push_to_hub_organization=None,\n",
80
+ "push_to_hub_token=<PUSH_TO_HUB_TOKEN>,\n",
81
+ "remove_unused_columns=True,\n",
82
+ "report_to=[],\n",
83
+ "resume_from_checkpoint=None,\n",
84
+ "run_name=./,\n",
85
+ "save_on_each_node=False,\n",
86
+ "save_steps=200,\n",
87
+ "save_strategy=IntervalStrategy.STEPS,\n",
88
+ "save_total_limit=3,\n",
89
+ "seed=42,\n",
90
+ "sharded_ddp=[],\n",
91
+ "skip_memory_metrics=True,\n",
92
+ "tf32=None,\n",
93
+ "tpu_metrics_debug=False,\n",
94
+ "tpu_num_cores=None,\n",
95
+ "use_legacy_prediction_loop=False,\n",
96
+ "warmup_ratio=0.0,\n",
97
+ "warmup_steps=500,\n",
98
+ "weight_decay=0.0,\n",
99
+ "xpu_backend=None,\n",
100
+ ")\n",
101
+ "02/07/2022 11:34:14 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hi/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b)\n",
102
+ "02/07/2022 11:34:17 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hi/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b)\n",
103
+ "02/07/2022 11:34:17 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hi/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b/cache-56c362c60f5a4e8d.arrow\n",
104
+ "02/07/2022 11:34:17 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hi/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b/cache-c2794d9326d1e793.arrow\n",
105
+ "loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
106
+ "Model config Wav2Vec2Config {\n",
107
+ " \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
108
+ " \"activation_dropout\": 0.0,\n",
109
+ " \"adapter_kernel_size\": 3,\n",
110
+ " \"adapter_stride\": 2,\n",
111
+ " \"add_adapter\": false,\n",
112
+ " \"apply_spec_augment\": true,\n",
113
+ " \"architectures\": [\n",
114
+ " \"Wav2Vec2ForPreTraining\"\n",
115
+ " ],\n",
116
+ " \"attention_dropout\": 0.1,\n",
117
+ " \"bos_token_id\": 1,\n",
118
+ " \"classifier_proj_size\": 256,\n",
119
+ " \"codevector_dim\": 768,\n",
120
+ " \"contrastive_logits_temperature\": 0.1,\n",
121
+ " \"conv_bias\": true,\n",
122
+ " \"conv_dim\": [\n",
123
+ " 512,\n",
124
+ " 512,\n",
125
+ " 512,\n",
126
+ " 512,\n",
127
+ " 512,\n",
128
+ " 512,\n",
129
+ " 512\n",
130
+ " ],\n",
131
+ " \"conv_kernel\": [\n",
132
+ " 10,\n",
133
+ " 3,\n",
134
+ " 3,\n",
135
+ " 3,\n",
136
+ " 3,\n",
137
+ " 2,\n",
138
+ " 2\n",
139
+ " ],\n",
140
+ " \"conv_stride\": [\n",
141
+ " 5,\n",
142
+ " 2,\n",
143
+ " 2,\n",
144
+ " 2,\n",
145
+ " 2,\n",
146
+ " 2,\n",
147
+ " 2\n",
148
+ " ],\n",
149
+ " \"ctc_loss_reduction\": \"sum\",\n",
150
+ " \"ctc_zero_infinity\": false,\n",
151
+ " \"diversity_loss_weight\": 0.1,\n",
152
+ " \"do_stable_layer_norm\": true,\n",
153
+ " \"eos_token_id\": 2,\n",
154
+ " \"feat_extract_activation\": \"gelu\",\n",
155
+ " \"feat_extract_dropout\": 0.0,\n",
156
+ " \"feat_extract_norm\": \"layer\",\n",
157
+ " \"feat_proj_dropout\": 0.1,\n",
158
+ " \"feat_quantizer_dropout\": 0.0,\n",
159
+ " \"final_dropout\": 0.0,\n",
160
+ " \"gradient_checkpointing\": false,\n",
161
+ " \"hidden_act\": \"gelu\",\n",
162
+ " \"hidden_dropout\": 0.1,\n",
163
+ " \"hidden_size\": 1024,\n",
164
+ " \"initializer_range\": 0.02,\n",
165
+ " \"intermediate_size\": 4096,\n",
166
+ " \"layer_norm_eps\": 1e-05,\n",
167
+ " \"layerdrop\": 0.1,\n",
168
+ " \"mask_feature_length\": 10,\n",
169
+ " \"mask_feature_min_masks\": 0,\n",
170
+ " \"mask_feature_prob\": 0.0,\n",
171
+ " \"mask_time_length\": 10,\n",
172
+ " \"mask_time_min_masks\": 2,\n",
173
+ " \"mask_time_prob\": 0.075,\n",
174
+ " \"model_type\": \"wav2vec2\",\n",
175
+ " \"num_adapter_layers\": 3,\n",
176
+ " \"num_attention_heads\": 16,\n",
177
+ " \"num_codevector_groups\": 2,\n",
178
+ " \"num_codevectors_per_group\": 320,\n",
179
+ " \"num_conv_pos_embedding_groups\": 16,\n",
180
+ " \"num_conv_pos_embeddings\": 128,\n",
181
+ " \"num_feat_extract_layers\": 7,\n",
182
+ " \"num_hidden_layers\": 24,\n",
183
+ " \"num_negatives\": 100,\n",
184
+ " \"output_hidden_size\": 1024,\n",
185
+ " \"pad_token_id\": 0,\n",
186
+ " \"proj_codevector_dim\": 768,\n",
187
+ " \"tdnn_dilation\": [\n",
188
+ " 1,\n",
189
+ " 2,\n",
190
+ " 3,\n",
191
+ " 1,\n",
192
+ " 1\n",
193
+ " ],\n",
194
+ " \"tdnn_dim\": [\n",
195
+ " 512,\n",
196
+ " 512,\n",
197
+ " 512,\n",
198
+ " 512,\n",
199
+ " 1500\n",
200
+ " ],\n",
201
+ " \"tdnn_kernel\": [\n",
202
+ " 5,\n",
203
+ " 3,\n",
204
+ " 3,\n",
205
+ " 1,\n",
206
+ " 1\n",
207
+ " ],\n",
208
+ " \"torch_dtype\": \"float32\",\n",
209
+ " \"transformers_version\": \"4.16.2\",\n",
210
+ " \"use_weighted_layer_sum\": false,\n",
211
+ " \"vocab_size\": 32,\n",
212
+ " \"xvector_output_dim\": 512\n",
213
+ "}\n",
214
+ "\n",
215
+ "100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 3.97ba/s]\n",
216
+ "100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 15.14ba/s]\n",
217
+ "{'j', 'y', 'x', 'l', 'm', 'ज़', 'क', 'ऐ', 'ऊ', 'त', 'ञ', 'p', 'n', 'u', 'ी', 'ऋ', 'ठ', 'छ', 'ा', 'क़', '&', 'c', 'ण', 'ढ़', 'w', 'अ', 'r', ' ', 'ष', 'ट', \"'\", 'ग़', 'f', 'k', 't', 'ृ', 'v', 'भ', 'g', 'स', 'ऑ', 'े', 'झ', 'z', 'ो', 'इ', '|', '।', 'ु', 'ड़', 'ए', 'h', 'ब', 'ध', 'ग', 'ः', 'i', 'श', 'औ', 'र', 'e', 'य', 'ड', 'प', 'ि', 's', 'म', 'b', 'ख', '़', 'ल', 'ई', 'उ', 'द', 'ज', 'ढ', 'ओ', 'ॉ', 'ं', 'च', 'a', 'न', 'ै', 'घ', 'थ', 'o', 'फ', 'ँ', 'आ', 'd', 'ौ', 'ॅ', 'व', 'ू', '्', 'ह'} 96 <class 'set'> {' ': 0, '&': 1, \"'\": 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, 'f': 8, 'g': 9, 'h': 10, 'i': 11, 'j': 12, 'k': 13, 'l': 14, 'm': 15, 'n': 16, 'o': 17, 'p': 18, 'r': 19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27, '|': 28, 'ँ': 29, 'ं': 30, 'ः': 31, 'अ': 32, 'आ': 33, 'इ': 34, 'ई': 35, 'उ': 36, 'ऊ': 37, 'ऋ': 38, 'ए': 39, 'ऐ': 40, 'ऑ': 41, 'ओ': 42, 'औ': 43, 'क': 44, 'ख': 45, 'ग': 46, 'घ': 47, 'च': 48, 'छ': 49, 'ज': 50, 'झ': 51, 'ञ': 52, 'ट': 53, 'ठ': 54, 'ड': 55, 'ढ': 56, 'ण': 57, 'त': 58, 'थ': 59, 'द': 60, 'ध': 61, 'न': 62, 'प': 63, 'फ': 64, 'ब': 65, 'भ': 66, 'म': 67, 'य': 68, 'र': 69, 'ल': 70, 'व': 71, 'श': 72, 'ष': 73, 'स': 74, 'ह': 75, '़': 76, 'ा': 77, 'ि': 78, 'ी': 79, 'ु': 80, 'ू': 81, 'ृ': 82, 'ॅ': 83, 'े': 84, 'ै': 85, 'ॉ': 86, 'ो': 87, 'ौ': 88, '्': 89, 'क़': 90, 'ग़': 91, 'ज़': 92, 'ड़': 93, 'ढ़': 94, '।': 95}\n",
218
+ "{'&': 1, \"'\": 2, 'a': 3, 'b': 4, 'c': 5, 'd': 6, 'e': 7, 'f': 8, 'g': 9, 'h': 10, 'i': 11, 'j': 12, 'k': 13, 'l': 14, 'm': 15, 'n': 16, 'o': 17, 'p': 18, 'r': 19, 's': 20, 't': 21, 'u': 22, 'v': 23, 'w': 24, 'x': 25, 'y': 26, 'z': 27, '|': 28, 'ँ': 29, 'ं': 30, 'ः': 31, 'अ': 32, 'आ': 33, 'इ': 34, 'ई': 35, 'उ': 36, 'ऊ': 37, 'ऋ': 38, 'ए': 39, 'ऐ': 40, 'ऑ': 41, 'ओ': 42, 'औ': 43, 'क': 44, 'ख': 45, 'ग': 46, 'घ': 47, 'च': 48, 'छ': 49, 'ज': 50, 'झ': 51, 'ञ': 52, 'ट': 53, 'ठ': 54, 'ड': 55, 'ढ': 56, 'ण': 57, 'त': 58, 'थ': 59, 'द': 60, 'ध': 61, 'न': 62, 'प': 63, 'फ': 64, 'ब': 65, 'भ': 66, 'म': 67, 'य': 68, 'र': 69, 'ल': 70, 'व': 71, 'श': 72, 'ष': 73, 'स': 74, 'ह': 75, '़': 76, 'ा': 77, 'ि': 78, 'ी': 79, 'ु': 80, 'ू': 81, 'ृ': 82, 'ॅ': 83, 'े': 84, 'ै': 85, 'ॉ': 86, 'ो': 87, 'ौ': 88, '्': 89, 'क़': 90, 'ग़': 91, 'ज़': 92, 'ड़': 93, 'ढ़': 94, '।': 95, '$': 0, '[UNK]': 96, '[PAD]': 97}\n",
219
+ "Didn't find file ./tokenizer_config.json. We won't load it.\n",
220
+ "Didn't find file ./added_tokens.json. We won't load it.\n",
221
+ "Didn't find file ./special_tokens_map.json. We won't load it.\n",
222
+ "Didn't find file ./tokenizer.json. We won't load it.\n",
223
+ "loading file ./vocab.json\n",
224
+ "loading file None\n",
225
+ "loading file None\n",
226
+ "loading file None\n",
227
+ "loading file None\n",
228
+ "file ./config.json not found\n",
229
+ "Adding <s> to the vocabulary\n",
230
+ "Adding </s> to the vocabulary\n",
231
+ "Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
232
+ "loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
233
+ "Model config Wav2Vec2Config {\n",
234
+ " \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
235
+ " \"activation_dropout\": 0.0,\n",
236
+ " \"adapter_kernel_size\": 3,\n",
237
+ " \"adapter_stride\": 2,\n",
238
+ " \"add_adapter\": false,\n",
239
+ " \"apply_spec_augment\": true,\n",
240
+ " \"architectures\": [\n",
241
+ " \"Wav2Vec2ForPreTraining\"\n",
242
+ " ],\n",
243
+ " \"attention_dropout\": 0.1,\n",
244
+ " \"bos_token_id\": 1,\n",
245
+ " \"classifier_proj_size\": 256,\n",
246
+ " \"codevector_dim\": 768,\n",
247
+ " \"contrastive_logits_temperature\": 0.1,\n",
248
+ " \"conv_bias\": true,\n",
249
+ " \"conv_dim\": [\n",
250
+ " 512,\n",
251
+ " 512,\n",
252
+ " 512,\n",
253
+ " 512,\n",
254
+ " 512,\n",
255
+ " 512,\n",
256
+ " 512\n",
257
+ " ],\n",
258
+ " \"conv_kernel\": [\n",
259
+ " 10,\n",
260
+ " 3,\n",
261
+ " 3,\n",
262
+ " 3,\n",
263
+ " 3,\n",
264
+ " 2,\n",
265
+ " 2\n",
266
+ " ],\n",
267
+ " \"conv_stride\": [\n",
268
+ " 5,\n",
269
+ " 2,\n",
270
+ " 2,\n",
271
+ " 2,\n",
272
+ " 2,\n",
273
+ " 2,\n",
274
+ " 2\n",
275
+ " ],\n",
276
+ " \"ctc_loss_reduction\": \"sum\",\n",
277
+ " \"ctc_zero_infinity\": false,\n",
278
+ " \"diversity_loss_weight\": 0.1,\n",
279
+ " \"do_stable_layer_norm\": true,\n",
280
+ " \"eos_token_id\": 2,\n",
281
+ " \"feat_extract_activation\": \"gelu\",\n",
282
+ " \"feat_extract_dropout\": 0.0,\n",
283
+ " \"feat_extract_norm\": \"layer\",\n",
284
+ " \"feat_proj_dropout\": 0.1,\n",
285
+ " \"feat_quantizer_dropout\": 0.0,\n",
286
+ " \"final_dropout\": 0.0,\n",
287
+ " \"gradient_checkpointing\": false,\n",
288
+ " \"hidden_act\": \"gelu\",\n",
289
+ " \"hidden_dropout\": 0.1,\n",
290
+ " \"hidden_size\": 1024,\n",
291
+ " \"initializer_range\": 0.02,\n",
292
+ " \"intermediate_size\": 4096,\n",
293
+ " \"layer_norm_eps\": 1e-05,\n",
294
+ " \"layerdrop\": 0.1,\n",
295
+ " \"mask_feature_length\": 10,\n",
296
+ " \"mask_feature_min_masks\": 0,\n",
297
+ " \"mask_feature_prob\": 0.0,\n",
298
+ " \"mask_time_length\": 10,\n",
299
+ " \"mask_time_min_masks\": 2,\n",
300
+ " \"mask_time_prob\": 0.075,\n",
301
+ " \"model_type\": \"wav2vec2\",\n",
302
+ " \"num_adapter_layers\": 3,\n",
303
+ " \"num_attention_heads\": 16,\n",
304
+ " \"num_codevector_groups\": 2,\n",
305
+ " \"num_codevectors_per_group\": 320,\n",
306
+ " \"num_conv_pos_embedding_groups\": 16,\n",
307
+ " \"num_conv_pos_embeddings\": 128,\n",
308
+ " \"num_feat_extract_layers\": 7,\n",
309
+ " \"num_hidden_layers\": 24,\n",
310
+ " \"num_negatives\": 100,\n",
311
+ " \"output_hidden_size\": 1024,\n",
312
+ " \"pad_token_id\": 0,\n",
313
+ " \"proj_codevector_dim\": 768,\n",
314
+ " \"tdnn_dilation\": [\n",
315
+ " 1,\n",
316
+ " 2,\n",
317
+ " 3,\n",
318
+ " 1,\n",
319
+ " 1\n",
320
+ " ],\n",
321
+ " \"tdnn_dim\": [\n",
322
+ " 512,\n",
323
+ " 512,\n",
324
+ " 512,\n",
325
+ " 512,\n",
326
+ " 1500\n",
327
+ " ],\n",
328
+ " \"tdnn_kernel\": [\n",
329
+ " 5,\n",
330
+ " 3,\n",
331
+ " 3,\n",
332
+ " 1,\n",
333
+ " 1\n",
334
+ " ],\n",
335
+ " \"torch_dtype\": \"float32\",\n",
336
+ " \"transformers_version\": \"4.16.2\",\n",
337
+ " \"use_weighted_layer_sum\": false,\n",
338
+ " \"vocab_size\": 32,\n",
339
+ " \"xvector_output_dim\": 512\n",
340
+ "}\n",
341
+ "\n",
342
+ "loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326\n",
343
+ "Feature extractor Wav2Vec2FeatureExtractor {\n",
344
+ " \"do_normalize\": true,\n",
345
+ " \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
346
+ " \"feature_size\": 1,\n",
347
+ " \"padding_side\": \"right\",\n",
348
+ " \"padding_value\": 0,\n",
349
+ " \"return_attention_mask\": true,\n",
350
+ " \"sampling_rate\": 16000\n",
351
+ "}\n",
352
+ "\n",
353
+ "loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd\n",
354
+ "^C\n",
355
+ "Traceback (most recent call last):\n",
356
+ " File \"run_speech_recognition_ctc.py\", line 765, in <module>\n",
357
+ " main()\n",
358
+ " File \"run_speech_recognition_ctc.py\", line 572, in main\n",
359
+ " model = AutoModelForCTC.from_pretrained(\n",
360
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/auto/auto_factory.py\", line 447, in from_pretrained\n",
361
+ " return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)\n",
362
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/modeling_utils.py\", line 1489, in from_pretrained\n",
363
+ " model = cls(config, *model_args, **model_kwargs)\n",
364
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py\", line 1680, in __init__\n",
365
+ " self.wav2vec2 = Wav2Vec2Model(config)\n",
366
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py\", line 1234, in __init__\n",
367
+ " self.encoder = Wav2Vec2EncoderStableLayerNorm(config)\n",
368
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py\", line 859, in __init__\n",
369
+ " [Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]\n",
370
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py\", line 859, in <listcomp>\n",
371
+ " [Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]\n",
372
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py\", line 737, in __init__\n",
373
+ " self.attention = Wav2Vec2Attention(\n",
374
+ " File \"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py\", line 559, in __init__\n",
375
+ " self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)\n",
376
+ " File \"/opt/conda/lib/python3.8/site-packages/torch/nn/modules/linear.py\", line 90, in __init__\n",
377
+ " self.reset_parameters()\n",
378
+ " File \"/opt/conda/lib/python3.8/site-packages/torch/nn/modules/linear.py\", line 96, in reset_parameters\n",
379
+ " init.kaiming_uniform_(self.weight, a=math.sqrt(5))\n",
380
+ " File \"/opt/conda/lib/python3.8/site-packages/torch/nn/init.py\", line 395, in kaiming_uniform_\n",
381
+ " return tensor.uniform_(-bound, bound)\n",
382
+ "KeyboardInterrupt\n"
383
+ ]
384
+ }
385
+ ],
386
+ "source": [
387
+ "!. run.sh"
388
+ ]
389
+ },
390
+ {
391
+ "cell_type": "code",
392
+ "execution_count": null,
393
+ "id": "5c2d3236",
394
+ "metadata": {},
395
+ "outputs": [],
396
+ "source": []
397
+ }
398
+ ],
399
+ "metadata": {
400
+ "kernelspec": {
401
+ "display_name": "Python 3",
402
+ "language": "python",
403
+ "name": "python3"
404
+ },
405
+ "language_info": {
406
+ "codemirror_mode": {
407
+ "name": "ipython",
408
+ "version": 3
409
+ },
410
+ "file_extension": ".py",
411
+ "mimetype": "text/x-python",
412
+ "name": "python",
413
+ "nbconvert_exporter": "python",
414
+ "pygments_lexer": "ipython3",
415
+ "version": "3.8.8"
416
+ }
417
+ },
418
+ "nbformat": 4,
419
+ "nbformat_minor": 5
420
+ }
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 98, "</s>": 99}
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.0,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1024,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 4096,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.0,
62
+ "mask_feature_length": 10,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.0,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.05,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 24,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1024,
79
+ "pad_token_id": 97,
80
+ "proj_codevector_dim": 768,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.16.2",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 100,
106
+ "xvector_output_dim": 512
107
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b94df9afab6a29dde619f3dae5b5c27e9f1d4aba16828352b07ee3a2b43a008
3
+ size 1262333681
run.sh ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="mozilla-foundation/common_voice_7_0" \
3
+ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \
4
+ --dataset_config_name="hi" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --max_steps="8000" \
8
+ --per_device_train_batch_size="16" \
9
+ --learning_rate="3e-4" \
10
+ --warmup_steps="500" \
11
+ --save_steps="200" \
12
+ --eval_steps="400" \
13
+ --save_total_limit="3" \
14
+ --evaluation_strategy="steps" \
15
+ --text_column_name="sentence" \
16
+ --length_column_name="input_length" \
17
+ --layerdrop="0.0" \
18
+ --freeze_feature_encoder \
19
+ --gradient_checkpointing \
20
+ --fp16 \
21
+ --group_by_length \
22
+ --push_to_hub \
23
+ --use_auth_token \
24
+ --do_train \
25
+ --do_eval \
26
+ --chars_to_ignore , ? . ! - \; \: \" “ % ‘ ” � \
27
+
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,765 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http:a
10
+ # //www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+
17
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
18
+
19
+ import functools
20
+ import json
21
+ import logging
22
+ import os
23
+ import re
24
+ import sys
25
+ import warnings
26
+ from dataclasses import dataclass, field
27
+ from typing import Dict, List, Optional, Union
28
+
29
+ import datasets
30
+ import numpy as np
31
+ import torch
32
+ from datasets import DatasetDict, load_dataset, load_metric
33
+
34
+ import transformers
35
+ from transformers import (
36
+ AutoConfig,
37
+ AutoFeatureExtractor,
38
+ AutoModelForCTC,
39
+ AutoProcessor,
40
+ AutoTokenizer,
41
+ HfArgumentParser,
42
+ Trainer,
43
+ TrainingArguments,
44
+ Wav2Vec2Processor,
45
+ set_seed,
46
+ )
47
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
48
+ from transformers.utils import check_min_version
49
+ from transformers.utils.versions import require_version
50
+
51
+
52
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
53
+ check_min_version("4.16.0.dev0")
54
+
55
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
56
+
57
+
58
+ logger = logging.getLogger(__name__)
59
+
60
+
61
+ def list_field(default=None, metadata=None):
62
+ return field(default_factory=lambda: default, metadata=metadata)
63
+
64
+
65
+ @dataclass
66
+ class ModelArguments:
67
+ """
68
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
69
+ """
70
+
71
+ model_name_or_path: str = field(
72
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
73
+ )
74
+ tokenizer_name_or_path: Optional[str] = field(
75
+ default=None,
76
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
77
+ )
78
+ cache_dir: Optional[str] = field(
79
+ default=None,
80
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
81
+ )
82
+ freeze_feature_encoder: bool = field(
83
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
84
+ )
85
+ attention_dropout: float = field(
86
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
87
+ )
88
+ activation_dropout: float = field(
89
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
90
+ )
91
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
92
+ hidden_dropout: float = field(
93
+ default=0.0,
94
+ metadata={
95
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
96
+ },
97
+ )
98
+ final_dropout: float = field(
99
+ default=0.0,
100
+ metadata={"help": "The dropout probability for the final projection layer."},
101
+ )
102
+ mask_time_prob: float = field(
103
+ default=0.05,
104
+ metadata={
105
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
106
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
107
+ "vectors will be masked along the time axis."
108
+ },
109
+ )
110
+ mask_time_length: int = field(
111
+ default=10,
112
+ metadata={"help": "Length of vector span to mask along the time axis."},
113
+ )
114
+ mask_feature_prob: float = field(
115
+ default=0.0,
116
+ metadata={
117
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
118
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
119
+ },
120
+ )
121
+ mask_feature_length: int = field(
122
+ default=10,
123
+ metadata={"help": "Length of vector span to mask along the feature axis."},
124
+ )
125
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
126
+ ctc_loss_reduction: Optional[str] = field(
127
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
128
+ )
129
+
130
+
131
+ @dataclass
132
+ class DataTrainingArguments:
133
+ """
134
+ Arguments pertaining to what data we are going to input our model for training and eval.
135
+
136
+ Using `HfArgumentParser` we can turn this class
137
+ into argparse arguments to be able to specify them on
138
+ the command line.
139
+ """
140
+
141
+ dataset_name: str = field(
142
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
143
+ )
144
+ dataset_config_name: str = field(
145
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
146
+ )
147
+ train_split_name: str = field(
148
+ default="train+validation",
149
+ metadata={
150
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
151
+ },
152
+ )
153
+ eval_split_name: str = field(
154
+ default="test",
155
+ metadata={
156
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
157
+ },
158
+ )
159
+ audio_column_name: str = field(
160
+ default="audio",
161
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
162
+ )
163
+ text_column_name: str = field(
164
+ default="text",
165
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
166
+ )
167
+ overwrite_cache: bool = field(
168
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
169
+ )
170
+ preprocessing_num_workers: Optional[int] = field(
171
+ default=None,
172
+ metadata={"help": "The number of processes to use for the preprocessing."},
173
+ )
174
+ max_train_samples: Optional[int] = field(
175
+ default=None,
176
+ metadata={
177
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
178
+ "value if set."
179
+ },
180
+ )
181
+ max_eval_samples: Optional[int] = field(
182
+ default=None,
183
+ metadata={
184
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
185
+ "value if set."
186
+ },
187
+ )
188
+ chars_to_ignore: Optional[List[str]] = list_field(
189
+ default=None,
190
+ metadata={"help": "A list of characters to remove from the transcripts."},
191
+ )
192
+ eval_metrics: List[str] = list_field(
193
+ default=["wer"],
194
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
195
+ )
196
+ max_duration_in_seconds: float = field(
197
+ default=20.0,
198
+ metadata={
199
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
200
+ },
201
+ )
202
+ min_duration_in_seconds: float = field(
203
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
204
+ )
205
+ preprocessing_only: bool = field(
206
+ default=False,
207
+ metadata={
208
+ "help": "Whether to only do data preprocessing and skip training. "
209
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
210
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
211
+ "so that the cached datasets can consequently be loaded in distributed training"
212
+ },
213
+ )
214
+ use_auth_token: bool = field(
215
+ default=False,
216
+ metadata={
217
+ "help": "If :obj:`True`, will use the token generated when running"
218
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
219
+ },
220
+ )
221
+ unk_token: str = field(
222
+ default="[UNK]",
223
+ metadata={"help": "The unk token for the tokenizer"},
224
+ )
225
+ pad_token: str = field(
226
+ default="[PAD]",
227
+ metadata={"help": "The padding token for the tokenizer"},
228
+ )
229
+ word_delimiter_token: str = field(
230
+ default="$",
231
+ metadata={"help": "The word delimiter token for the tokenizer"},
232
+ )
233
+ phoneme_language: Optional[str] = field(
234
+ default=None,
235
+ metadata={
236
+ "help": "The target language that should be used be"
237
+ " passed to the tokenizer for tokenization. Note that"
238
+ " this is only relevant if the model classifies the"
239
+ " input audio to a sequence of phoneme sequences."
240
+ },
241
+ )
242
+
243
+
244
+ @dataclass
245
+ class DataCollatorCTCWithPadding:
246
+ """
247
+ Data collator that will dynamically pad the inputs received.
248
+ Args:
249
+ processor (:class:`~transformers.AutoProcessor`)
250
+ The processor used for proccessing the data.
251
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
252
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
253
+ among:
254
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
255
+ sequence if provided).
256
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
257
+ maximum acceptable input length for the model if that argument is not provided.
258
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
259
+ different lengths).
260
+ max_length (:obj:`int`, `optional`):
261
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
262
+ max_length_labels (:obj:`int`, `optional`):
263
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
264
+ pad_to_multiple_of (:obj:`int`, `optional`):
265
+ If set will pad the sequence to a multiple of the provided value.
266
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
267
+ 7.5 (Volta).
268
+ """
269
+
270
+ processor: AutoProcessor
271
+ padding: Union[bool, str] = "longest"
272
+ pad_to_multiple_of: Optional[int] = None
273
+ pad_to_multiple_of_labels: Optional[int] = None
274
+
275
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
276
+ # split inputs and labels since they have to be of different lenghts and need
277
+ # different padding methods
278
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
279
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
280
+
281
+ batch = self.processor.pad(
282
+ input_features,
283
+ padding=self.padding,
284
+ pad_to_multiple_of=self.pad_to_multiple_of,
285
+ return_tensors="pt",
286
+ )
287
+
288
+ with self.processor.as_target_processor():
289
+ labels_batch = self.processor.pad(
290
+ label_features,
291
+ padding=self.padding,
292
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
293
+ return_tensors="pt",
294
+ )
295
+
296
+ # replace padding with -100 to ignore loss correctly
297
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
298
+
299
+ batch["labels"] = labels
300
+
301
+ return batch
302
+
303
+
304
+ def create_vocabulary_from_data(
305
+ datasets: DatasetDict,
306
+ word_delimiter_token: Optional[str] = None,
307
+ unk_token: Optional[str] = None,
308
+ pad_token: Optional[str] = None,
309
+ ):
310
+ # Given training and test labels create vocabulary
311
+ def extract_all_chars(batch):
312
+ all_text = " ".join(batch["target_text"])
313
+ vocab = list(set(all_text))
314
+ return {"vocab": [vocab], "all_text": [all_text]}
315
+
316
+ vocabs = datasets.map(
317
+ extract_all_chars,
318
+ batched=True,
319
+ batch_size=-1,
320
+ keep_in_memory=True,
321
+ remove_columns=datasets["train"].column_names,
322
+ )
323
+
324
+ # take union of all unique characters in each dataset
325
+ vocab_set = functools.reduce(
326
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
327
+ )
328
+
329
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(set(vocab_set))))}
330
+ print(vocab_set,len(vocab_set),type(vocab_set),vocab_dict)
331
+ # replace white space with delimiter token
332
+ if word_delimiter_token is not None:
333
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
334
+ del vocab_dict[" "]
335
+
336
+ # add unk and pad token
337
+ if unk_token is not None:
338
+ vocab_dict[unk_token] = len(vocab_dict)
339
+
340
+ if pad_token is not None:
341
+ vocab_dict[pad_token] = len(vocab_dict)
342
+
343
+ print(vocab_dict)
344
+ return vocab_dict
345
+
346
+
347
+ def main():
348
+ # See all possible arguments in src/transformers/training_args.py
349
+ # or by passing the --help flag to this script.
350
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
351
+
352
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
353
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
354
+ # If we pass only one argument to the script and it's the path to a json file,
355
+ # let's parse it to get our arguments.
356
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
357
+ else:
358
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
359
+
360
+ # Detecting last checkpoint.
361
+ last_checkpoint = None
362
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
363
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
364
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
365
+ raise ValueError(
366
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
367
+ "Use --overwrite_output_dir to overcome."
368
+ )
369
+ elif last_checkpoint is not None:
370
+ logger.info(
371
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
372
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
373
+ )
374
+
375
+ # Setup logging
376
+ logging.basicConfig(
377
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
378
+ datefmt="%m/%d/%Y %H:%M:%S",
379
+ handlers=[logging.StreamHandler(sys.stdout)],
380
+ )
381
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
382
+
383
+ # Log on each process the small summary:
384
+ logger.warning(
385
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
386
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
387
+ )
388
+ # Set the verbosity to info of the Transformers logger (on main process only):
389
+ if is_main_process(training_args.local_rank):
390
+ transformers.utils.logging.set_verbosity_info()
391
+ logger.info("Training/evaluation parameters %s", training_args)
392
+
393
+ # Set seed before initializing model.
394
+ set_seed(training_args.seed)
395
+
396
+ # 1. First, let's load the dataset
397
+ raw_datasets = DatasetDict()
398
+
399
+ if training_args.do_train:
400
+ raw_datasets["train"] = load_dataset(
401
+ data_args.dataset_name,
402
+ data_args.dataset_config_name,
403
+ split=data_args.train_split_name,
404
+ use_auth_token=data_args.use_auth_token,
405
+ )
406
+
407
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
408
+ raise ValueError(
409
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
410
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
411
+ f"{', '.join(raw_datasets['train'].column_names)}."
412
+ )
413
+
414
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
415
+ raise ValueError(
416
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
417
+ "Make sure to set `--text_column_name` to the correct text column - one of "
418
+ f"{', '.join(raw_datasets['train'].column_names)}."
419
+ )
420
+
421
+ if data_args.max_train_samples is not None:
422
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
423
+
424
+ if training_args.do_eval:
425
+ raw_datasets["eval"] = load_dataset(
426
+ data_args.dataset_name,
427
+ data_args.dataset_config_name,
428
+ split=data_args.eval_split_name,
429
+ use_auth_token=data_args.use_auth_token,
430
+ )
431
+
432
+ if data_args.max_eval_samples is not None:
433
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
434
+
435
+ # 2. We remove some special characters from the datasets
436
+ # that make training complicated and do not help in transcribing the speech
437
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
438
+ # that could be easily picked up by the model
439
+ # chars_to_ignore_regex = (
440
+ # f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
441
+ # )
442
+ chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]'
443
+ text_column_name = data_args.text_column_name
444
+
445
+
446
+ def replace_text(text):
447
+ text=text.replace('„', r'"')
448
+ text=text.replace('“', r'"')
449
+ text=text.replace('”', r'"')
450
+ text=text.replace('–', r'-')
451
+ text=text.replace('—', r' - ')
452
+ text=text.replace('´', r"'")
453
+ text=text.replace('‘', r"'")
454
+ text=text.replace('‚', r"'")
455
+ text=text.replace('’', r"'")
456
+ text=text.replace("''", r'"')
457
+ text=text.replace('´´', r'"')
458
+
459
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
460
+ for t in token_sequences_to_ignore:
461
+ text = " ".join(text.split(t))
462
+ return text
463
+
464
+ def remove_special_characters(batch):
465
+ text=batch[text_column_name]
466
+ text=replace_text(text)
467
+
468
+
469
+ if chars_to_ignore_regex is not None:
470
+ target_text = re.sub(chars_to_ignore_regex, "", text).lower() + " "
471
+ else:
472
+ target_text = text.lower() + " "
473
+
474
+ batch["target_text"]=target_text
475
+ return batch
476
+
477
+ with training_args.main_process_first(desc="dataset map special characters removal"):
478
+ raw_datasets = raw_datasets.map(
479
+ remove_special_characters,
480
+ remove_columns=[text_column_name],
481
+ desc="remove special characters from datasets",
482
+ )
483
+
484
+ # save special tokens for tokenizer
485
+ word_delimiter_token = data_args.word_delimiter_token
486
+ unk_token = data_args.unk_token
487
+ pad_token = data_args.pad_token
488
+
489
+ # 3. Next, let's load the config as we might need it to create
490
+ # the tokenizer
491
+ # load config
492
+ config = AutoConfig.from_pretrained(
493
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
494
+ )
495
+
496
+ # 4. Next, if no tokenizer file is defined,
497
+ # we create the vocabulary of the model by extracting all unique characters from
498
+ # the training and evaluation datasets
499
+ # We need to make sure that only first rank saves vocabulary
500
+ # make sure all processes wait until vocab is created
501
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
502
+ tokenizer_kwargs = {}
503
+ if tokenizer_name_or_path is None:
504
+ # save vocab in training output dir
505
+ tokenizer_name_or_path = training_args.output_dir
506
+
507
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
508
+
509
+ with training_args.main_process_first():
510
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
511
+ os.remove(vocab_file)
512
+
513
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
514
+ if not os.path.isfile(vocab_file):
515
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
516
+ vocab_dict = create_vocabulary_from_data(
517
+ raw_datasets,
518
+ word_delimiter_token=word_delimiter_token,
519
+ unk_token=unk_token,
520
+ pad_token=pad_token,
521
+ )
522
+
523
+ # save vocab dict to be loaded into tokenizer
524
+ with open(vocab_file, "w") as file:
525
+ json.dump(vocab_dict, file)
526
+
527
+ # if tokenizer has just been created
528
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
529
+ tokenizer_kwargs = {
530
+ "config": config if config.tokenizer_class is not None else None,
531
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
532
+ "unk_token": unk_token,
533
+ "pad_token": pad_token,
534
+ "word_delimiter_token": word_delimiter_token,
535
+ }
536
+
537
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
538
+ # Note for distributed training, the .from_pretrained methods guarantee that only
539
+ # one local process can concurrently download model & vocab.
540
+
541
+ # load feature_extractor and tokenizer
542
+ tokenizer = AutoTokenizer.from_pretrained(
543
+ tokenizer_name_or_path,
544
+ use_auth_token=data_args.use_auth_token,
545
+ **tokenizer_kwargs,
546
+ )
547
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
548
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
549
+ )
550
+
551
+ # adapt config
552
+ config.update(
553
+ {
554
+ "feat_proj_dropout": model_args.feat_proj_dropout,
555
+ "attention_dropout": model_args.attention_dropout,
556
+ "hidden_dropout": model_args.hidden_dropout,
557
+ "final_dropout": model_args.final_dropout,
558
+ "mask_time_prob": model_args.mask_time_prob,
559
+ "mask_time_length": model_args.mask_time_length,
560
+ "mask_feature_prob": model_args.mask_feature_prob,
561
+ "mask_feature_length": model_args.mask_feature_length,
562
+ "gradient_checkpointing": training_args.gradient_checkpointing,
563
+ "layerdrop": model_args.layerdrop,
564
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
565
+ "pad_token_id": tokenizer.pad_token_id,
566
+ "vocab_size": len(tokenizer),
567
+ "activation_dropout": model_args.activation_dropout,
568
+ }
569
+ )
570
+
571
+ # create model
572
+ model = AutoModelForCTC.from_pretrained(
573
+ model_args.model_name_or_path,
574
+ cache_dir=model_args.cache_dir,
575
+ config=config,
576
+ use_auth_token=data_args.use_auth_token,
577
+ )
578
+
579
+ # freeze encoder
580
+ if model_args.freeze_feature_encoder:
581
+ model.freeze_feature_encoder()
582
+
583
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
584
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
585
+ # so that we just need to set the correct target sampling rate and normalize the input
586
+ # via the `feature_extractor`
587
+
588
+ # make sure that dataset decodes audio with correct sampling rate
589
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
590
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
591
+ raw_datasets = raw_datasets.cast_column(
592
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
593
+ )
594
+
595
+ # derive max & min input length for sample rate & max duration
596
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
597
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
598
+ audio_column_name = data_args.audio_column_name
599
+ num_workers = data_args.preprocessing_num_workers
600
+
601
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
602
+ phoneme_language = data_args.phoneme_language
603
+
604
+ # Preprocessing the datasets.
605
+ # We need to read the audio files as arrays and tokenize the targets.
606
+ def prepare_dataset(batch):
607
+ # load audio
608
+ sample = batch[audio_column_name]
609
+
610
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
611
+ batch["input_values"] = inputs.input_values[0]
612
+ batch["input_length"] = len(batch["input_values"])
613
+
614
+ # encode targets
615
+ additional_kwargs = {}
616
+ if phoneme_language is not None:
617
+ additional_kwargs["phonemizer_lang"] = phoneme_language
618
+
619
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
620
+ return batch
621
+
622
+ with training_args.main_process_first(desc="dataset map preprocessing"):
623
+ vectorized_datasets = raw_datasets.map(
624
+ prepare_dataset,
625
+ remove_columns=next(iter(raw_datasets.values())).column_names,
626
+ num_proc=num_workers,
627
+ desc="preprocess datasets",
628
+ )
629
+
630
+ def is_audio_in_length_range(length):
631
+ return length > min_input_length and length < max_input_length
632
+
633
+ # filter data that is shorter than min_input_length
634
+ vectorized_datasets = vectorized_datasets.filter(
635
+ is_audio_in_length_range,
636
+ num_proc=num_workers,
637
+ input_columns=["input_length"],
638
+ )
639
+
640
+ # 7. Next, we can prepare the training.
641
+ # Let's use word error rate (WER) as our evaluation metric,
642
+ # instantiate a data collator and the trainer
643
+
644
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
645
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
646
+
647
+ # for large datasets it is advised to run the preprocessing on a
648
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
649
+ # be a timeout when running the script in distributed mode.
650
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
651
+ # cached dataset
652
+ if data_args.preprocessing_only:
653
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
654
+ return
655
+
656
+ def compute_metrics(pred):
657
+ pred_logits = pred.predictions
658
+ pred_ids = np.argmax(pred_logits, axis=-1)
659
+
660
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
661
+
662
+ pred_str = tokenizer.batch_decode(pred_ids)
663
+ # we do not want to group tokens when computing the metrics
664
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
665
+
666
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
667
+
668
+ return metrics
669
+
670
+ # Now save everything to be able to create a single processor later
671
+ if is_main_process(training_args.local_rank):
672
+ # save feature extractor, tokenizer and config
673
+ feature_extractor.save_pretrained(training_args.output_dir)
674
+ tokenizer.save_pretrained(training_args.output_dir)
675
+ config.save_pretrained(training_args.output_dir)
676
+
677
+ try:
678
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
679
+ except (OSError, KeyError):
680
+ warnings.warn(
681
+ "Loading a processor from a feature extractor config that does not"
682
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
683
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
684
+ " `'processor_class': 'Wav2Vec2Processor'`",
685
+ FutureWarning,
686
+ )
687
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
688
+
689
+ # Instantiate custom data collator
690
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
691
+
692
+ # Initialize Trainer
693
+ trainer = Trainer(
694
+ model=model,
695
+ data_collator=data_collator,
696
+ args=training_args,
697
+ compute_metrics=compute_metrics,
698
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
699
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
700
+ tokenizer=feature_extractor,
701
+ )
702
+
703
+ # 8. Finally, we can start training
704
+
705
+ # Training
706
+ if training_args.do_train:
707
+
708
+ # use last checkpoint if exist
709
+ if last_checkpoint is not None:
710
+ checkpoint = last_checkpoint
711
+ elif os.path.isdir(model_args.model_name_or_path):
712
+ checkpoint = model_args.model_name_or_path
713
+ else:
714
+ checkpoint = None
715
+
716
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
717
+ trainer.save_model()
718
+
719
+ metrics = train_result.metrics
720
+ max_train_samples = (
721
+ data_args.max_train_samples
722
+ if data_args.max_train_samples is not None
723
+ else len(vectorized_datasets["train"])
724
+ )
725
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
726
+
727
+ trainer.log_metrics("train", metrics)
728
+ trainer.save_metrics("train", metrics)
729
+ trainer.save_state()
730
+
731
+ # Evaluation
732
+ results = {}
733
+ if training_args.do_eval:
734
+ logger.info("*** Evaluate ***")
735
+ metrics = trainer.evaluate()
736
+ max_eval_samples = (
737
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
738
+ )
739
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
740
+
741
+ trainer.log_metrics("eval", metrics)
742
+ trainer.save_metrics("eval", metrics)
743
+
744
+ # Write model card and (optionally) push to hub
745
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
746
+ kwargs = {
747
+ "finetuned_from": model_args.model_name_or_path,
748
+ "tasks": "speech-recognition",
749
+ "tags": ["automatic-speech-recognition", data_args.dataset_name,"robust-speech-event"],
750
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
751
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
752
+ }
753
+ if "common_voice" in data_args.dataset_name:
754
+ kwargs["language"] = config_name
755
+
756
+ if training_args.push_to_hub:
757
+ trainer.push_to_hub(**kwargs)
758
+ else:
759
+ trainer.create_model_card(**kwargs)
760
+
761
+ return results
762
+
763
+
764
+ if __name__ == "__main__":
765
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "$", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b14a8f9f8277105473cbf033c9a27c340ba9432e25e5aaa2aef3d10c81d85e9
3
+ size 2991
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"&": 1, "'": 2, "a": 3, "b": 4, "c": 5, "d": 6, "e": 7, "f": 8, "g": 9, "h": 10, "i": 11, "j": 12, "k": 13, "l": 14, "m": 15, "n": 16, "o": 17, "p": 18, "r": 19, "s": 20, "t": 21, "u": 22, "v": 23, "w": 24, "x": 25, "y": 26, "z": 27, "|": 28, "ँ": 29, "ं": 30, "ः": 31, "अ": 32, "आ": 33, "इ": 34, "ई": 35, "उ": 36, "ऊ": 37, "ऋ": 38, "ए": 39, "ऐ": 40, "ऑ": 41, "ओ": 42, "औ": 43, "क": 44, "ख": 45, "ग": 46, "घ": 47, "च": 48, "छ": 49, "ज": 50, "झ": 51, "ञ": 52, "ट": 53, "ठ": 54, "ड": 55, "ढ": 56, "ण": 57, "त": 58, "थ": 59, "द": 60, "ध": 61, "न": 62, "प": 63, "फ": 64, "ब": 65, "भ": 66, "म": 67, "य": 68, "र": 69, "ल": 70, "व": 71, "श": 72, "ष": 73, "स": 74, "ह": 75, "़": 76, "ा": 77, "ि": 78, "ी": 79, "ु": 80, "ू": 81, "ृ": 82, "ॅ": 83, "े": 84, "ै": 85, "ॉ": 86, "ो": 87, "ौ": 88, "्": 89, "क़": 90, "ग़": 91, "ज़": 92, "ड़": 93, "ढ़": 94, "।": 95, "$": 0, "[UNK]": 96, "[PAD]": 97}