Fastspeech2_HS_Flask_API / hifigan /inference_from_espnet.py
k-m-irfan's picture
updated large files with lfs
9f1c059
from __future__ import absolute_import, division, print_function, unicode_literals
import glob
import os
import argparse
import json
import torch
import numpy as np
from scipy.io.wavfile import write
from env import AttrDict
from meldataset import mel_spectrogram, MAX_WAV_VALUE, load_wav
from models import Generator
import time
h = None
device = "cpu"
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def get_mel(x):
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '*')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return ''
return sorted(cp_list)[-1]
def inference(a):
generator = Generator(h).to(device)
state_dict_g = load_checkpoint(a.checkpoint_file, device)
generator.load_state_dict(state_dict_g['generator'])
filelist = os.listdir(a.input_wavs_dir)
os.makedirs(a.output_dir, exist_ok=True)
generator.eval()
generator.remove_weight_norm()
with torch.no_grad():
for i, filname in enumerate(filelist):
print(filname)
# wav, sr = load_wav(os.path.join(a.input_wavs_dir, filname))
# wav = wav / MAX_WAV_VALUE
# wav = torch.FloatTensor(wav).to(device)
# x = get_mel(wav.unsqueeze(0))
# print("x is ", x.shape)
arr2 = torch.load(os.path.join(a.input_wavs_dir, filname))
print("arr2 type", type(arr2))
# arr = np.load(os.path.join(a.input_wavs_dir, filname))
arr = np.array(arr2).astype(float)
print("arr type", type(arr))
# arr = np.loadtxt(os.path.join(a.input_wavs_dir, filname),dtype='float')
if arr.shape[0]!=80:
arr = arr.T
print(arr.shape)
# arr = x.detach().cpu().numpy()
# print(arr.shape[0],arr.shape[1],arr.shape[2])
# arr_new = arr.reshape(arr.shape[1],arr.shape[2])
# print(arr_new.shape)
arr_new2 = arr.reshape(1,arr.shape[0],arr.shape[1])
###x_new = torch.from_numpy(arr_new2).float().to(device)
x_new = torch.FloatTensor(arr_new2).to(device)
print("x_new",x_new.shape)
# x = x_new
# np.savetxt('tests/' + filname + '.txt', arr_new)
# y_new = torch.from_numpy(arr.unsqueeze(0))
# print(y_new.shape)
st = time.time()
y_g_hat = generator(x_new)
et = time.time()
print("Time taken by generator:", (et-st))
audio = y_g_hat.squeeze()
audio = audio * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated.wav')
write(output_file, h.sampling_rate, audio)
print(output_file)
def main():
print('Initializing Inference Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--input_wavs_dir', default='denorm')
parser.add_argument('--output_dir', default='wav_folder')
parser.add_argument('--checkpoint_file', required=True)
a = parser.parse_args()
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json')
with open(config_file) as f:
data = f.read()
global h
json_config = json.loads(data)
h = AttrDict(json_config)
torch.manual_seed(h.seed)
global device
if device is None and torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda')
else:
device = torch.device('cpu')
print("device", device)
inference(a)
if __name__ == '__main__':
main()