juliocesar-io commited on
Commit
e9e21ff
·
verified ·
1 Parent(s): 6f5af7e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -1
README.md CHANGED
@@ -9,4 +9,159 @@ tags:
9
  - chemistry
10
  - biology
11
  - medical
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  - chemistry
10
  - biology
11
  - medical
12
+ ---
13
+ # PLA-Net
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+
19
+ **PLA-Net** is a deep learning model designed to predict interactions between small organic molecules (ligands) and any of the 102 target proteins in the Alzheimer's Disease (AD) dataset. By transforming molecular and protein sequences into graph representations, PLA-Net leverages Graph Convolutional Networks (GCNs) to analyze and predict target-ligand interaction probabilities. Developed by [BCV-Uniandes](https://github.com/BCV-Uniandes/PLA-Net).
20
+
21
+ ## Key Features
22
+
23
+ - **Graph-Based Input Representation**
24
+ - **Ligand Module (LM):** Converts SMILES sequences of molecules into graph representations.
25
+ - **Protein Module (PM):** Transforms FASTA sequences of proteins into graph structures.
26
+
27
+ - **Deep Graph Convolutional Networks**
28
+ - Each module employs a deep GCN followed by an average pooling layer to extract meaningful features from the input graphs.
29
+
30
+ - **Interaction Prediction**
31
+ - The feature representations from the LM and PM are concatenated.
32
+ - A fully connected layer processes the combined features to predict the interaction probability between the ligand and the target protein.
33
+
34
+ - **Developed by:** [BCV-Uniandes](https://github.com/BCV-Uniandes/PLA-Net).
35
+ - **Model type:** GCNs, Graph Convolutional Networks
36
+ - **Language(s) (NLP):** Python
37
+ - **License:** MIT
38
+
39
+ ### Model Sources
40
+
41
+ - **Repository Fork:** [https://github.com/juliocesar-io/PLA-Net](https://github.com/juliocesar-io/PLA-Net)
42
+ - **Repository Official:** [https://github.com/BCV-Uniandes/PLA-Net](https://github.com/BCV-Uniandes/PLA-Net)
43
+ - **Paper:**
44
+ - **Demo:**
45
+
46
+ ## Docker Install
47
+
48
+ To prevent conflicts with the host machine, it is recommended to run PLA-Net in a Docker container.
49
+
50
+ First make sure you have an NVIDIA GPU and [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) installed. Then build the image with the following command:
51
+
52
+ ```bash
53
+ docker build -t pla-net:latest .
54
+ ```
55
+
56
+ ### Inference
57
+
58
+ To run inference, run the following command:
59
+
60
+ ```bash
61
+ docker run \
62
+ -it --rm --gpus all \
63
+ -v "$(pwd)":/home/user/output \
64
+ pla-net:latest \
65
+ python /home/user/app/scripts/pla_net_inference.py \
66
+ --use_gpu \
67
+ --target ada \
68
+ --target_list /home/user/app/data/datasets/AD/Targets_Fasta.csv \
69
+ --target_checkpoint_path /home/user/app/pretrained-models/BINARY_ada \
70
+ --input_file_smiles /home/user/app/example/input_smiles.csv \
71
+ --output_file /home/user/output/output_predictions.csv
72
+ ```
73
+
74
+
75
+ This will run inference for the target protein `ada` with the SMILES in the `input_smiles.csv` file and save the predictions to the `output_predictions.csv` file.
76
+
77
+ The prediction file has the following format:
78
+
79
+ ```bash
80
+ target,smiles,interaction_probability,interaction_class
81
+ ada,Cn4c(CCC(=O)Nc3ccc2ccn(CC[C@H](CO)n1cnc(C(N)=O)c1)c2c3)nc5ccccc45,0.9994347542524338,1
82
+ ```
83
+
84
+ Where `interaction_class` is 1 if the interaction probability is greater than 0.5, and 0 otherwise.
85
+
86
+
87
+ *Inference Args:*
88
+
89
+ - `use_gpu`: Use GPU for inference.
90
+ - `target`: Target protein ID from the list of targets. Check the list of available targets in the [data](https://github.com/juliocesar-io/PLA-Net/blob/main/data/datasets/AD/Targets_Fasta.csv) folder.
91
+ - `target_list`: Path to the target list CSV file.
92
+ - `target_checkpoint_path`: Path to the target checkpoint. (e.g. `/workspace/pretrained-models/BINARY_ada`) one checkpoint for each target.
93
+ - `input_file_smiles`: Path to the input SMILES file.
94
+ - `output_file`: Path to the output predictions file.
95
+
96
+
97
+ ### Gradio Server
98
+ We provide a simple graphical user interface to run PLA-Net with Gradio. To use it, run the following command:
99
+
100
+ ```bash
101
+ docker run \
102
+ -it --rm --gpus all \
103
+ -p 7860:7860 \
104
+ pla-net:latest \
105
+ python app.py
106
+ ```
107
+
108
+ Then open your browser and go to `http://localhost:7860/` to access the web interface.
109
+
110
+
111
+ ## Local Install
112
+
113
+ To do inference with PLA-Net, you need to install the dependencies and activate the environment. You can do this by running the following commands:
114
+
115
+ ```bash
116
+ conda env create -f environment.yml
117
+ conda activate pla-net
118
+ ```
119
+
120
+ Now you can run inference with PLA-Net locally. In the project folder, run the following command:
121
+
122
+ ```bash
123
+ python scripts/pla_net_inference.py \
124
+ --use_gpu \
125
+ --target ada \
126
+ --target_list data/datasets/AD/Targets_Fasta.csv \
127
+ --target_checkpoint_path pretrained-models/BINARY_ada \
128
+ --input_file_smiles example/input_smiles.csv \
129
+ --output_file example/output_predictions.csv
130
+ ```
131
+
132
+ ## Models
133
+
134
+ You can download the pre-trained models from [Hugging Face](https://huggingface.co/juliocesar-io/PLA-Net).
135
+ ## Training
136
+
137
+ To train each of the components of our method: LM, LM+Advs, LMPM and PLA-Net please refer to planet.sh file and run the desired models.
138
+
139
+ To evaluate each of the components of our method: LM, LM+Advs, LMPM and PLA-Net please run the corresponding bash file in the inference folder.
140
+
141
+
142
+ ## Citation
143
+
144
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
145
+
146
+ **BibTeX:**
147
+
148
+ ```
149
+ @article{ruiz2022predicting,
150
+ title={Predicting target--ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery},
151
+ author={Ruiz Puentes, Paola and Rueda-Gensini, Laura and Valderrama, Natalia and Hern{\'a}ndez, Isabela and Gonz{\'a}lez, Cristina and Daza, Laura and Mu{\~n}oz-Camargo, Carolina and Cruz, Juan C and Arbel{\'a}ez, Pablo},
152
+ journal={Scientific reports},
153
+ volume={12},
154
+ number={1},
155
+ pages={1--17},
156
+ year={2022},
157
+ publisher={Nature Publishing Group}
158
+ }
159
+ ```
160
+
161
+ ## Model Card Authors
162
+
163
+ - [Julio César](https://juliocesar.io/)
164
+
165
+ ## Model Card Contact
166
+
167