jpopham91 commited on
Commit
54aad9e
·
1 Parent(s): 9e0cb51

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1593.92 +/- 487.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6248b4658834c007f223efc73985214be19ca5af6b32dc1f9b211e3c9c589a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8481678c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8481678ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8481678d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8481678dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8481678e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8481678ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8481678f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f848167d040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f848167d0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f848167d160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f848167d1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f848167d280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f8481676690>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1673998971241242504,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANpt8z7aRwg/NuEJP5nfsD886QY/mtvZP+gdNb93tbu/fFaJvlWAKUDkAGI/Z/cdP2mGo78R4ac+jT77Pg4LMMDX3xG/NUsWPK+0YD7nkaI/jQcgv215Dj/f6dW987bNviQdaj9ZXAXAvtYQP4w0i7+d03a8pnEIP3LSCT8Pv0E/ZEeyPnvbGD8sKJ6+P6RUv1NyDD8R6ma/lTsEv636kr8JqhE8usebPp9oID8UooQ//jWWP2yXSL7KS0S81c2ivybsR7/h/bi/Lc0jP9RgCD9S94u/obX1Ptc84r+2ZGs/VrCCP0P07759+PE+KRu3P95AAkCY4JG/iWEMvswIg7+NS9c+KhKgvu4ESz/VdQC+UOlJPrSXiD85owW8EglTvgq4kz+yQJi9e5mBv2HSIT8cLwc/VZtDv6uI/D5K/qs/UveLv6G19T7XPOK/jDSLv7NriL5ojQa/zNHiPnMJ3T/PoT0/poGNPv+ODL+9+Pc9+GsnP2bJk7yGOGO/vck+v36Gh70Ahbw/S4zyPnILOT/sNXQ+qPDNP6Z1aL7hOMU+YGeavq2j0L44DNk+UFWzPlL3i7+htfU+vtYQP7Zkaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMvC62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAphICvQAAAABfi/2/AAAAAEFlcL0AAAAAo1DhPwAAAAD1zxG+AAAAAMGg5z8AAAAAaTeEvQAAAADbQQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsmuHtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjXOLwAAAAApKT2vwAAAAAKM5M9AAAAANMK5T8AAAAAGgsDvgAAAAAVINo/AAAAANXK8j0AAAAAdV7hvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJdop7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDkRa49AAAAALcWAMAAAAAASD8MvgAAAAARSQBAAAAAANI0fz0AAAAAfxzzPwAAAACrGsy9AAAAAJam/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALF4E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlOLPPQAAAAA1xt+/AAAAAOrKuzoAAAAApRDtPwAAAAAljQ4+AAAAAO1p/z8AAAAANhENvgAAAADfbvq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJarkaYNRWOMAWyUTegDjAF0lEdAqgiro4dZJXV9lChoBkdAmIWgcHWz4WgHTegDaAhHQKoOV9JjDsN1fZQoaAZHQJvsNx+8XepoB03oA2gIR0CqDlsIu5BkdX2UKGgGR0CWh2W3Sa3JaAdN6ANoCEdAqhPaDujRD3V9lChoBkdAnGQSxu89OmgHTegDaAhHQKoUzwaR6nl1fZQoaAZHQJmG7kU9IPNoB03oA2gIR0CqGo4FqzqsdX2UKGgGR0Cc1A08NhE0aAdN6ANoCEdAqhqRVyWAw3V9lChoBkdAnoUH3UQTVWgHTegDaAhHQKogI7gbZOB1fZQoaAZHQJ0Q92OhkAhoB03oA2gIR0CqIRYkVvdedX2UKGgGR0Ca10lNUOuraAdN6ANoCEdAqia+QZGayHV9lChoBkdAnSjdtygf2mgHTegDaAhHQKomwUVzp5h1fZQoaAZHQJ6ejSa3I+5oB03oA2gIR0CqLERTKkmAdX2UKGgGR0CcYwM7lq8EaAdN6ANoCEdAqi0vxjJ+2HV9lChoBkdAmwtqPXCj12gHTegDaAhHQKoy1fMwDeV1fZQoaAZHQJ3X8vkBCD5oB03oA2gIR0CqMtjxkNF0dX2UKGgGR0Ce8wowEhaDaAdN6ANoCEdAqjgxvcafjHV9lChoBkdAngR+0kWykmgHTegDaAhHQKo5JUedTYN1fZQoaAZHQJ7TOzVtoBdoB03oA2gIR0CqPszYukDZdX2UKGgGR0CeZJ3qRlpXaAdN6ANoCEdAqj7P9tMwlHV9lChoBkdAmeuAaWHDaWgHTegDaAhHQKpESMWGh251fZQoaAZHQJs7D1h9b5doB03oA2gIR0CqRUmCZnctdX2UKGgGR0CdLOPmPo3aaAdN6ANoCEdAqksGbLEDQ3V9lChoBkdAnsZFe0G/vmgHTegDaAhHQKpLCXQ+lj51fZQoaAZHQJyRjv+fh/BoB03oA2gIR0CqUISeAd4ndX2UKGgGR0CVvOX3xnWbaAdN6ANoCEdAqlF53kgfVHV9lChoBkdAnQpCeAd4mmgHTegDaAhHQKpXMFlkH2R1fZQoaAZHQJ7Gt8Aq/dtoB03oA2gIR0CqVzOCGvfTdX2UKGgGR0Cd6rUyHmA9aAdN6ANoCEdAqlzBTyauwHV9lChoBkdAoAb6S9ugpWgHTegDaAhHQKpdtGm1pkB1fZQoaAZHQJ8cx/MGHHpoB03oA2gIR0CqY480UGmldX2UKGgGR0CfoYzyBkI5aAdN6ANoCEdAqmOSRMewLXV9lChoBkdAnWURegL7XWgHTegDaAhHQKppEmJFb3Z1fZQoaAZHQJ9s9WPtD2JoB03oA2gIR0CqagcJ+lTFdX2UKGgGR0CfosKaoddWaAdN6ANoCEdAqm+oVXV9W3V9lChoBkdAn3XIjSofjmgHTegDaAhHQKpvq5Etuk11fZQoaAZHQJ3o8AHVwxZoB03oA2gIR0CqdRf1pTMrdX2UKGgGR0Cd/hfthNM5aAdN6ANoCEdAqnYTALy+YnV9lChoBkdAmm8EVFhG6WgHTegDaAhHQKp74+JP69F1fZQoaAZHQJ8SrJvHcUNoB03oA2gIR0Cqe+dKdxyXdX2UKGgGR0Cfe9tD2JzlaAdN6ANoCEdAqoFf3cpLEnV9lChoBkdAmVnVz6rNn2gHTegDaAhHQKqCVvSc9W91fZQoaAZHQJmQe7+T/yZoB03oA2gIR0CqiATuv2XcdX2UKGgGR0CaHD8J2MbWaAdN6ANoCEdAqogIAbQ1JnV9lChoBkdAiAqiZv1lG2gHTegDaAhHQKqNe6+36RB1fZQoaAZHQJsooVdonKJoB03oA2gIR0CqjnVSOzY3dX2UKGgGR0B4ds72criEaAdN6ANoCEdAqpQ90gbIcXV9lChoBkdAmcCbUsnRcGgHTegDaAhHQKqUQRW912d1fZQoaAZHQIelsvCdjG1oB03oA2gIR0CqmdzposZpdX2UKGgGR0CZi+Esrd30aAdN6ANoCEdAqprLL2YfGXV9lChoBkdAm6u1lXiiqWgHTegDaAhHQKqgljzZpSJ1fZQoaAZHQJ+ahhrnDBNoB03oA2gIR0CqoJlH8TBZdX2UKGgGR0CbZrKHfuTiaAdN6ANoCEdAqqYcinpB5XV9lChoBkdAnEBFLJ0W/WgHTegDaAhHQKqnFXnyNGV1fZQoaAZHQJdhEgHNX5poB03oA2gIR0CqrMTS9du6dX2UKGgGR0CbQpps41gqaAdN6ANoCEdAqqzHu3MINXV9lChoBkdAmQyEiY9gW2gHTegDaAhHQKqyK1DSgGt1fZQoaAZHQJ6BCWu5jH5oB03oA2gIR0CqsxzxwyZbdX2UKGgGR0CgTClg+hXbaAdN6ANoCEdAqrjRky1uznV9lChoBkdAmOeR3zMA3mgHTegDaAhHQKq41NPgvUV1fZQoaAZHQJbfzWf9P1toB03oA2gIR0Cqvix9G7SRdX2UKGgGR0CahOx3FDOUaAdN6ANoCEdAqr8d94NZvHV9lChoBkdAlzesYZVGTmgHTegDaAhHQKrEsFpwjt51fZQoaAZHQKAJIkGA09BoB03oA2gIR0CqxLNP557gdX2UKGgGR0Cezzvgm7aqaAdN6ANoCEdAqsn9GNJe3XV9lChoBkdAn8HPlyR0VGgHTegDaAhHQKrK6MqjJuF1fZQoaAZHQJ94JAPd2xJoB03oA2gIR0Cq0HdoWYWtdX2UKGgGR0CgxdVv2oNvaAdN6ANoCEdAqtB6QtBfKXV9lChoBkdAnQ5//zasZGgHTegDaAhHQKrV5iDM/yJ1fZQoaAZHQKAdw98qnWJoB03oA2gIR0Cq1tkTQE6ldX2UKGgGR0CXLR3juKGdaAdN6ANoCEdAqtyETN+so3V9lChoBkdAmrBmKyfL92gHTegDaAhHQKrchzT4L1F1fZQoaAZHQJ/i52FFlTZoB03oA2gIR0Cq4gblzU7TdX2UKGgGR0Ca9+bKzRhMaAdN6ANoCEdAquL0vIwM6XV9lChoBkdAnqblzMibD2gHTegDaAhHQKrooq5LAYZ1fZQoaAZHQJ/8UNutOmBoB03oA2gIR0Cq6KWtU4rCdX2UKGgGR0Cf/djLSuyNaAdN6ANoCEdAqu4VHxz7uXV9lChoBkdAn3TPnfVI7WgHTegDaAhHQKrvAy31BdF1fZQoaAZHQJ9bXtY0VJtoB03oA2gIR0Cq9Lw2l2vCdX2UKGgGR0CdNcINVinYaAdN6ANoCEdAqvS/2IwdsHV9lChoBkdAn89VUIcBEWgHTegDaAhHQKr6Kgf2bod1fZQoaAZHQKB7SiL2pQ1oB03oA2gIR0Cq+xelTFVDdX2UKGgGR0Cb2Rr3Cbc5aAdN6ANoCEdAqwC1Sde6Z3V9lChoBkdAmXxB5ooNNWgHTegDaAhHQKsAuFHJ9y91fZQoaAZHQJ4eBxkupS9oB03oA2gIR0CrBgRcVxjsdX2UKGgGR0CTzZ03fhuPaAdN6ANoCEdAqwb1CAtnPHV9lChoBkdAnKCqyjYZmGgHTegDaAhHQKsNICYCyQh1fZQoaAZHQJr3yX/o7mxoB03oA2gIR0CrDSRXGOuJdX2UKGgGR0CZw5TNdJJ5aAdN6ANoCEdAqxZdn5BToHV9lChoBkdAmrhNg8bJfmgHTegDaAhHQKsX56XSjQB1fZQoaAZHQJqaHsQd0aJoB03oA2gIR0CrH8Cr92ovdX2UKGgGR0CacbhJAdGRaAdN6ANoCEdAqx/DvCuU2XV9lChoBkdAnJ9nhbW3B2gHTegDaAhHQKslPSNOuaF1fZQoaAZHQJw92ufVZs9oB03oA2gIR0CrJjP8AJb/dX2UKGgGR0CXrKJ6IFeOaAdN6ANoCEdAqyvbHuJDV3V9lChoBkdAnCagHAymAWgHTegDaAhHQKsr3h2nsLR1fZQoaAZHQJqH8Ym9g4RoB03oA2gIR0CrMUiKiwjddX2UKGgGR0CcGfqbz9S/aAdN6ANoCEdAqzI8O5J9RnV9lChoBkdAkq4VBt1p02gHTegDaAhHQKs3/hWHUMJ1fZQoaAZHQJzOqdNFjNJoB03oA2gIR0CrOAFSsKb8dX2UKGgGR0Cerv2gnMMaaAdN6ANoCEdAqz168rZrYXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e54407f5ae7771e878359fd48220bfc1bfb4f9a25de327a4263b490c5220c031
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b068ba94e1d8f1f3eafb1f1bd413a6de4154a36b05ec11a22f11e3b258871183
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8481678c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8481678ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8481678d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8481678dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f8481678e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f8481678ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8481678f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f848167d040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f848167d0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f848167d160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f848167d1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f848167d280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8481676690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673998971241242504, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANpt8z7aRwg/NuEJP5nfsD886QY/mtvZP+gdNb93tbu/fFaJvlWAKUDkAGI/Z/cdP2mGo78R4ac+jT77Pg4LMMDX3xG/NUsWPK+0YD7nkaI/jQcgv215Dj/f6dW987bNviQdaj9ZXAXAvtYQP4w0i7+d03a8pnEIP3LSCT8Pv0E/ZEeyPnvbGD8sKJ6+P6RUv1NyDD8R6ma/lTsEv636kr8JqhE8usebPp9oID8UooQ//jWWP2yXSL7KS0S81c2ivybsR7/h/bi/Lc0jP9RgCD9S94u/obX1Ptc84r+2ZGs/VrCCP0P07759+PE+KRu3P95AAkCY4JG/iWEMvswIg7+NS9c+KhKgvu4ESz/VdQC+UOlJPrSXiD85owW8EglTvgq4kz+yQJi9e5mBv2HSIT8cLwc/VZtDv6uI/D5K/qs/UveLv6G19T7XPOK/jDSLv7NriL5ojQa/zNHiPnMJ3T/PoT0/poGNPv+ODL+9+Pc9+GsnP2bJk7yGOGO/vck+v36Gh70Ahbw/S4zyPnILOT/sNXQ+qPDNP6Z1aL7hOMU+YGeavq2j0L44DNk+UFWzPlL3i7+htfU+vtYQP7Zkaz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMvC62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAphICvQAAAABfi/2/AAAAAEFlcL0AAAAAo1DhPwAAAAD1zxG+AAAAAMGg5z8AAAAAaTeEvQAAAADbQQHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsmuHtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjXOLwAAAAApKT2vwAAAAAKM5M9AAAAANMK5T8AAAAAGgsDvgAAAAAVINo/AAAAANXK8j0AAAAAdV7hvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJdop7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDkRa49AAAAALcWAMAAAAAASD8MvgAAAAARSQBAAAAAANI0fz0AAAAAfxzzPwAAAACrGsy9AAAAAJam/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALF4E2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlOLPPQAAAAA1xt+/AAAAAOrKuzoAAAAApRDtPwAAAAAljQ4+AAAAAO1p/z8AAAAANhENvgAAAADfbvq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJarkaYNRWOMAWyUTegDjAF0lEdAqgiro4dZJXV9lChoBkdAmIWgcHWz4WgHTegDaAhHQKoOV9JjDsN1fZQoaAZHQJvsNx+8XepoB03oA2gIR0CqDlsIu5BkdX2UKGgGR0CWh2W3Sa3JaAdN6ANoCEdAqhPaDujRD3V9lChoBkdAnGQSxu89OmgHTegDaAhHQKoUzwaR6nl1fZQoaAZHQJmG7kU9IPNoB03oA2gIR0CqGo4FqzqsdX2UKGgGR0Cc1A08NhE0aAdN6ANoCEdAqhqRVyWAw3V9lChoBkdAnoUH3UQTVWgHTegDaAhHQKogI7gbZOB1fZQoaAZHQJ0Q92OhkAhoB03oA2gIR0CqIRYkVvdedX2UKGgGR0Ca10lNUOuraAdN6ANoCEdAqia+QZGayHV9lChoBkdAnSjdtygf2mgHTegDaAhHQKomwUVzp5h1fZQoaAZHQJ6ejSa3I+5oB03oA2gIR0CqLERTKkmAdX2UKGgGR0CcYwM7lq8EaAdN6ANoCEdAqi0vxjJ+2HV9lChoBkdAmwtqPXCj12gHTegDaAhHQKoy1fMwDeV1fZQoaAZHQJ3X8vkBCD5oB03oA2gIR0CqMtjxkNF0dX2UKGgGR0Ce8wowEhaDaAdN6ANoCEdAqjgxvcafjHV9lChoBkdAngR+0kWykmgHTegDaAhHQKo5JUedTYN1fZQoaAZHQJ7TOzVtoBdoB03oA2gIR0CqPszYukDZdX2UKGgGR0CeZJ3qRlpXaAdN6ANoCEdAqj7P9tMwlHV9lChoBkdAmeuAaWHDaWgHTegDaAhHQKpESMWGh251fZQoaAZHQJs7D1h9b5doB03oA2gIR0CqRUmCZnctdX2UKGgGR0CdLOPmPo3aaAdN6ANoCEdAqksGbLEDQ3V9lChoBkdAnsZFe0G/vmgHTegDaAhHQKpLCXQ+lj51fZQoaAZHQJyRjv+fh/BoB03oA2gIR0CqUISeAd4ndX2UKGgGR0CVvOX3xnWbaAdN6ANoCEdAqlF53kgfVHV9lChoBkdAnQpCeAd4mmgHTegDaAhHQKpXMFlkH2R1fZQoaAZHQJ7Gt8Aq/dtoB03oA2gIR0CqVzOCGvfTdX2UKGgGR0Cd6rUyHmA9aAdN6ANoCEdAqlzBTyauwHV9lChoBkdAoAb6S9ugpWgHTegDaAhHQKpdtGm1pkB1fZQoaAZHQJ8cx/MGHHpoB03oA2gIR0CqY480UGmldX2UKGgGR0CfoYzyBkI5aAdN6ANoCEdAqmOSRMewLXV9lChoBkdAnWURegL7XWgHTegDaAhHQKppEmJFb3Z1fZQoaAZHQJ9s9WPtD2JoB03oA2gIR0CqagcJ+lTFdX2UKGgGR0CfosKaoddWaAdN6ANoCEdAqm+oVXV9W3V9lChoBkdAn3XIjSofjmgHTegDaAhHQKpvq5Etuk11fZQoaAZHQJ3o8AHVwxZoB03oA2gIR0CqdRf1pTMrdX2UKGgGR0Cd/hfthNM5aAdN6ANoCEdAqnYTALy+YnV9lChoBkdAmm8EVFhG6WgHTegDaAhHQKp74+JP69F1fZQoaAZHQJ8SrJvHcUNoB03oA2gIR0Cqe+dKdxyXdX2UKGgGR0Cfe9tD2JzlaAdN6ANoCEdAqoFf3cpLEnV9lChoBkdAmVnVz6rNn2gHTegDaAhHQKqCVvSc9W91fZQoaAZHQJmQe7+T/yZoB03oA2gIR0CqiATuv2XcdX2UKGgGR0CaHD8J2MbWaAdN6ANoCEdAqogIAbQ1JnV9lChoBkdAiAqiZv1lG2gHTegDaAhHQKqNe6+36RB1fZQoaAZHQJsooVdonKJoB03oA2gIR0CqjnVSOzY3dX2UKGgGR0B4ds72criEaAdN6ANoCEdAqpQ90gbIcXV9lChoBkdAmcCbUsnRcGgHTegDaAhHQKqUQRW912d1fZQoaAZHQIelsvCdjG1oB03oA2gIR0CqmdzposZpdX2UKGgGR0CZi+Esrd30aAdN6ANoCEdAqprLL2YfGXV9lChoBkdAm6u1lXiiqWgHTegDaAhHQKqgljzZpSJ1fZQoaAZHQJ+ahhrnDBNoB03oA2gIR0CqoJlH8TBZdX2UKGgGR0CbZrKHfuTiaAdN6ANoCEdAqqYcinpB5XV9lChoBkdAnEBFLJ0W/WgHTegDaAhHQKqnFXnyNGV1fZQoaAZHQJdhEgHNX5poB03oA2gIR0CqrMTS9du6dX2UKGgGR0CbQpps41gqaAdN6ANoCEdAqqzHu3MINXV9lChoBkdAmQyEiY9gW2gHTegDaAhHQKqyK1DSgGt1fZQoaAZHQJ6BCWu5jH5oB03oA2gIR0CqsxzxwyZbdX2UKGgGR0CgTClg+hXbaAdN6ANoCEdAqrjRky1uznV9lChoBkdAmOeR3zMA3mgHTegDaAhHQKq41NPgvUV1fZQoaAZHQJbfzWf9P1toB03oA2gIR0Cqvix9G7SRdX2UKGgGR0CahOx3FDOUaAdN6ANoCEdAqr8d94NZvHV9lChoBkdAlzesYZVGTmgHTegDaAhHQKrEsFpwjt51fZQoaAZHQKAJIkGA09BoB03oA2gIR0CqxLNP557gdX2UKGgGR0Cezzvgm7aqaAdN6ANoCEdAqsn9GNJe3XV9lChoBkdAn8HPlyR0VGgHTegDaAhHQKrK6MqjJuF1fZQoaAZHQJ94JAPd2xJoB03oA2gIR0Cq0HdoWYWtdX2UKGgGR0CgxdVv2oNvaAdN6ANoCEdAqtB6QtBfKXV9lChoBkdAnQ5//zasZGgHTegDaAhHQKrV5iDM/yJ1fZQoaAZHQKAdw98qnWJoB03oA2gIR0Cq1tkTQE6ldX2UKGgGR0CXLR3juKGdaAdN6ANoCEdAqtyETN+so3V9lChoBkdAmrBmKyfL92gHTegDaAhHQKrchzT4L1F1fZQoaAZHQJ/i52FFlTZoB03oA2gIR0Cq4gblzU7TdX2UKGgGR0Ca9+bKzRhMaAdN6ANoCEdAquL0vIwM6XV9lChoBkdAnqblzMibD2gHTegDaAhHQKrooq5LAYZ1fZQoaAZHQJ/8UNutOmBoB03oA2gIR0Cq6KWtU4rCdX2UKGgGR0Cf/djLSuyNaAdN6ANoCEdAqu4VHxz7uXV9lChoBkdAn3TPnfVI7WgHTegDaAhHQKrvAy31BdF1fZQoaAZHQJ9bXtY0VJtoB03oA2gIR0Cq9Lw2l2vCdX2UKGgGR0CdNcINVinYaAdN6ANoCEdAqvS/2IwdsHV9lChoBkdAn89VUIcBEWgHTegDaAhHQKr6Kgf2bod1fZQoaAZHQKB7SiL2pQ1oB03oA2gIR0Cq+xelTFVDdX2UKGgGR0Cb2Rr3Cbc5aAdN6ANoCEdAqwC1Sde6Z3V9lChoBkdAmXxB5ooNNWgHTegDaAhHQKsAuFHJ9y91fZQoaAZHQJ4eBxkupS9oB03oA2gIR0CrBgRcVxjsdX2UKGgGR0CTzZ03fhuPaAdN6ANoCEdAqwb1CAtnPHV9lChoBkdAnKCqyjYZmGgHTegDaAhHQKsNICYCyQh1fZQoaAZHQJr3yX/o7mxoB03oA2gIR0CrDSRXGOuJdX2UKGgGR0CZw5TNdJJ5aAdN6ANoCEdAqxZdn5BToHV9lChoBkdAmrhNg8bJfmgHTegDaAhHQKsX56XSjQB1fZQoaAZHQJqaHsQd0aJoB03oA2gIR0CrH8Cr92ovdX2UKGgGR0CacbhJAdGRaAdN6ANoCEdAqx/DvCuU2XV9lChoBkdAnJ9nhbW3B2gHTegDaAhHQKslPSNOuaF1fZQoaAZHQJw92ufVZs9oB03oA2gIR0CrJjP8AJb/dX2UKGgGR0CXrKJ6IFeOaAdN6ANoCEdAqyvbHuJDV3V9lChoBkdAnCagHAymAWgHTegDaAhHQKsr3h2nsLR1fZQoaAZHQJqH8Ym9g4RoB03oA2gIR0CrMUiKiwjddX2UKGgGR0CcGfqbz9S/aAdN6ANoCEdAqzI8O5J9RnV9lChoBkdAkq4VBt1p02gHTegDaAhHQKs3/hWHUMJ1fZQoaAZHQJzOqdNFjNJoB03oA2gIR0CrOAFSsKb8dX2UKGgGR0Cerv2gnMMaaAdN6ANoCEdAqz168rZrYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c55361ed9da1aba587234bfde7e7d29d1f4740959bae0c93c24505a712b125f4
3
+ size 1083354
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1593.9208003523993, "std_reward": 487.9428690326667, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T00:53:48.327679"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85009083803def0c9ddba76cc0221de7e471990c851d1b7c945bf2df8ea7e607
3
+ size 2521