jordyvl commited on
Commit
192824c
·
1 Parent(s): b0f9e62

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: vit-base_rvl-cdip
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # vit-base_rvl-cdip
16
+
17
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5535
20
+ - Accuracy: 0.897
21
+ - Brier Loss: 0.1768
22
+ - Nll: 1.0978
23
+ - F1 Micro: 0.897
24
+ - F1 Macro: 0.8972
25
+ - Ece: 0.0801
26
+ - Aurc: 0.0180
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 4
47
+ - eval_batch_size: 4
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 16
50
+ - total_train_batch_size: 64
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 10
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
59
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
60
+ | 0.676 | 1.0 | 5000 | 0.6451 | 0.8230 | 0.2574 | 1.2627 | 0.8230 | 0.8237 | 0.0458 | 0.0425 |
61
+ | 0.4207 | 2.0 | 10000 | 0.4251 | 0.8766 | 0.1800 | 1.2821 | 0.8766 | 0.8779 | 0.0154 | 0.0218 |
62
+ | 0.3335 | 3.0 | 15000 | 0.3914 | 0.8861 | 0.1676 | 1.2589 | 0.8861 | 0.8858 | 0.0252 | 0.0192 |
63
+ | 0.2447 | 4.0 | 20000 | 0.3687 | 0.8934 | 0.1574 | 1.2243 | 0.8934 | 0.8937 | 0.0331 | 0.0164 |
64
+ | 0.1623 | 5.0 | 25000 | 0.3843 | 0.8976 | 0.1583 | 1.1553 | 0.8976 | 0.8973 | 0.0461 | 0.0159 |
65
+ | 0.1083 | 6.0 | 30000 | 0.4131 | 0.8964 | 0.1624 | 1.1514 | 0.8964 | 0.8967 | 0.0581 | 0.0163 |
66
+ | 0.0652 | 7.0 | 35000 | 0.4633 | 0.8966 | 0.1690 | 1.1300 | 0.8966 | 0.8967 | 0.0692 | 0.0169 |
67
+ | 0.0361 | 8.0 | 40000 | 0.5068 | 0.8976 | 0.1723 | 1.1161 | 0.8976 | 0.8976 | 0.0737 | 0.0175 |
68
+ | 0.0192 | 9.0 | 45000 | 0.5418 | 0.8982 | 0.1748 | 1.1015 | 0.8982 | 0.8983 | 0.0779 | 0.0179 |
69
+ | 0.0111 | 10.0 | 50000 | 0.5535 | 0.897 | 0.1768 | 1.0978 | 0.897 | 0.8972 | 0.0801 | 0.0180 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.26.1
75
+ - Pytorch 1.13.1.post200
76
+ - Datasets 2.9.0
77
+ - Tokenizers 0.13.2