File size: 1,170 Bytes
c711ca2
 
194b5d7
 
 
 
 
 
 
c711ca2
 
194b5d7
 
c711ca2
194b5d7
c711ca2
194b5d7
 
c711ca2
 
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
c711ca2
194b5d7
 
 
c711ca2
194b5d7
c711ca2
 
 
194b5d7
c711ca2
194b5d7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
library_name: transformers
license: mit
base_model: camembert-base
tags:
- generated_from_keras_callback
model-index:
- name: camembert-sentiment-allocine
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# camembert-sentiment-allocine

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': np.float32(0.001), 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results



### Framework versions

- Transformers 4.47.0
- TensorFlow 2.18.0
- Datasets 3.1.0
- Tokenizers 0.21.0