File size: 1,170 Bytes
c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 c711ca2 194b5d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
library_name: transformers
license: mit
base_model: camembert-base
tags:
- generated_from_keras_callback
model-index:
- name: camembert-sentiment-allocine
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# camembert-sentiment-allocine
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': np.float32(0.001), 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.47.0
- TensorFlow 2.18.0
- Datasets 3.1.0
- Tokenizers 0.21.0
|