joermd commited on
Commit
856e0e6
ยท
verified ยท
1 Parent(s): c57ac4a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -139
README.md CHANGED
@@ -1,139 +0,0 @@
1
- ---
2
- license: llama2
3
- datasets:
4
- - HuggingFaceH4/ultrachat_200k
5
- - HuggingFaceH4/ultrafeedback_binarized
6
- - HuggingFaceH4/cai-conversation-harmless
7
- language:
8
- - ar
9
- - en
10
- ---
11
-
12
-
13
-
14
- # SambaLingo-Arabic-Chat
15
-
16
- <img src="SambaLingo_Logo.png" width="340" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
17
-
18
- <!-- Provide a quick summary of what the model is/does. -->
19
- SambaLingo-Arabic-Chat is a human aligned chat model trained in Arabic and English. It is trained using direct preference optimization on top the base model [SambaLingo-Arabic-Base](https://huggingface.co/sambanovasystems/SambaLingo-Arabic-Base). The base model adapts [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) to Arabic by training on 63 billion tokens from the Arabic split of the [Cultura-X](https://huggingface.co/datasets/uonlp/CulturaX) dataset. Try This Model at [SambaLingo-chat-space](https://huggingface.co/spaces/sambanovasystems/SambaLingo-chat-space).
20
-
21
- ## Model Description
22
- <!-- Provide a longer summary of what this model is. -->
23
-
24
- - **Developed by:** [SambaNova Systems](https://sambanova.ai/)
25
- - **Model type:** Language Model
26
- - **Language(s):** Arabic, English
27
- - **Finetuned from model:** [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)
28
- - **Try This Model:** [SambaLingo-chat-space](https://huggingface.co/spaces/sambanovasystems/SambaLingo-chat-space)
29
- - **Paper:** [SambaLingo: Teaching Large Language Models New Languages](https://arxiv.org/abs/2404.05829)
30
- - **Blog Post**: [sambalingo-open-source-language-experts](https://sambanova.ai/blog/sambalingo-open-source-language-experts)
31
-
32
- ## Getting Started
33
-
34
- ### Loading Model With Hugging Face
35
- Please make sure to set use_fast=False when loading the tokenizer.
36
- ```python
37
- from transformers import AutoModelForCausalLM, AutoTokenizer
38
-
39
- tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat", use_fast=False)
40
- model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat", device_map="auto", torch_dtype="auto")
41
- ```
42
-
43
- ### Interacting With Model Pipeline
44
- Please make sure to set use_fast=False when loading the tokenizer.
45
- ```python
46
- from transformers import pipeline
47
- pipe = pipeline("text-generation", model="sambanovasystems/SambaLingo-Arabic-Chat", device_map="auto", use_fast=False)
48
- messages = [
49
- {"role": "user", "content": {YOUR_QUESTION}},
50
- ]
51
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
52
- outputs = pipe(prompt)[0]
53
- outputs = outputs["generated_text"]
54
- ```
55
-
56
- ### Suggested Inference Parameters
57
- - Temperature: 0.8
58
- - Repetition penalty: 1.0
59
- - Top-p: 0.9
60
-
61
- ### Prompting Guidelines
62
- To prompt this model, please use the following chat template:
63
- ```
64
- <|user|>\n{question}</s>\n<|assistant|>\n
65
- ```
66
-
67
- ### Example Prompts and Generations
68
- ```
69
- <|user|>
70
- ูƒู…ู„ูƒุŒ ู‡ู„ ุงู„ุงุญุณู† ุฃู† ุชูƒูˆู† ู…ุญุจูˆุจ ุฃูˆ ู…ุฎูŠู</s>
71
- <|assistant|>
72
- ู„ุง ุฃุณุชุทูŠุน ุฅุจุฏุงุก ุงู„ุฑุฃูŠ ุฃูˆ ุงู…ุชู„ุงูƒ ุงู„ู…ุดุงุนุฑุŒ ู„ูƒู† ูŠู…ูƒู†ู†ูŠ ุชู‚ุฏูŠู… ุฅุฌุงุจุฉ ู…ูˆุถูˆุนูŠุฉ ุนู„ู‰ ู‡ุฐุง ุงู„ุณุคุงู„. ููŠ ุญูŠู† ุฃู† ูƒูˆู†ูƒ ู…ุญุจูˆุจู‹ุง ูŠู…ูƒู† ุฃู† ูŠุฌู„ุจ ุงู„ุณุนุงุฏุฉ ูˆุงู„ุฑุถุงุŒ ูุฅู† ูƒูˆู†ูƒ ู…ุฎูŠูู‹ุง ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ู„ู‡ ุฃูŠุถู‹ุง ููˆุงุฆุฏู‡. ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ุŒ ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ุงู„ุดุฎุต ุงู„ู…ุฎูŠู ูุนุงู„ุงู‹ ููŠ ุฑุฏุน ุงู„ุณู„ูˆูƒูŠุงุช ุฃูˆ ุงู„ู…ูˆุงู‚ู ุบูŠุฑ ุงู„ู…ุฑุบูˆุจ ููŠู‡ุงุŒ ู…ุซู„ ุงู„ุชุฎุฑูŠุจ ุฃูˆ ุงู„ุชู†ู…ุฑ. ูˆู…ุน ุฐู„ูƒุŒ ู…ู† ุงู„ู…ู‡ู… ุฃู† ู†ุชุฐูƒุฑ ุฃู† ุงู„ุญุจ ูˆุงู„ู‚ุจูˆู„ ู‡ู…ุง ู‚ูŠู…ุชุงู† ู…ู‡ู…ุชุงู† ูŠุฌุจ ุงู„ุณุนูŠ ู„ุชุญู‚ูŠู‚ู‡ู…ุงุŒ ูˆุฃู† ูƒูˆู†ูƒ ู…ุญุจูˆุจู‹ุง ู„ุง ูŠู†ุจุบูŠ ุฃู† ูŠูƒูˆู† ุงู„ู‡ุฏู ุงู„ู†ู‡ุงุฆูŠ. ูˆุจุฏู„ุงู‹ ู…ู† ุฐู„ูƒุŒ ูŠุฌุจ ุฃู† ู†ุณุนู‰ ุฌุงู‡ุฏูŠู† ู„ู†ูƒูˆู† ุทูŠุจูŠู† ูˆุฑุญูŠู…ูŠู† ู…ุน ุงู„ุขุฎุฑูŠู†ุŒ ู…ุน ุงู„ุงุนุชุฑุงู ุฃูŠุถู‹ุง ุจุฃู† ูƒู„ ุดุฎุต ู„ุฏูŠู‡ ู†ู‚ุงุท ุงู„ู‚ูˆุฉ ูˆุงู„ุถุนู ุงู„ุฎุงุตุฉ ุจู‡.
73
- ```
74
-
75
- ## Training Details
76
- The alignment phase follows the recipe for [Zephyr-7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta), and comprises two stages: supervised fine-tuning (SFT) and Direct Performance Optimization (DPO).
77
-
78
- The SFT phase was done on the [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset mixed with the Google translated version of the ultrachat_200k dataset. It was trained for one epoch with global batch size 512 and max sequence length 2048 tokens. We used a linear decay learning rate of 2e-5 and 10% warmup.
79
-
80
- The DPO phase was done on the [ultrafeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset and [cai-conversation-harmless](https://huggingface.co/datasets/HuggingFaceH4/cai-conversation-harmless) dataset, mixed with 10% of the data Google translated. It was trained with global batch size 32 and for three epochs. We used a linear decay learning rate of 5e-7, 10% warmup and ฮฒ=0.1 as the regularization factor for DPO.
81
-
82
-
83
- ## Tokenizer Details
84
- We extended the vocabulary of the base llama model from 32,000 tokens to 57,000 tokens by adding up to 25,000 non-overlapping tokens from the new language.
85
-
86
- ## Evaluation
87
- For evaluation results see our paper: [SambaLingo: Teaching Large Language Models New Languages](https://arxiv.org/abs/2404.05829)
88
-
89
- ## Uses
90
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
91
-
92
- ### Direct Use
93
-
94
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
95
- Use of this model is governed by the Metaโ€™s [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/). Please review and accept the license before downloading the model weights.
96
-
97
-
98
- ### Out-of-Scope Use
99
-
100
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
101
- SambaLingo should NOT be used for:
102
-
103
- - Mission-critical applications
104
- - Applications that involve the safety of others
105
- - Making highly important decisions
106
-
107
- ## Bias, Risks, and Limitations
108
-
109
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
110
-
111
- Like all LLMs, SambaLingo has certain limitations:
112
- - Hallucination: Model may sometimes generate responses that contain plausible-sounding but factually incorrect or irrelevant information.
113
- - Code Switching: The model might unintentionally switch between languages or dialects within a single response, affecting the coherence and understandability of the output.
114
- - Repetition: The Model may produce repetitive phrases or sentences, leading to less engaging and informative responses.
115
- - Coding and Math: The model's performance in generating accurate code or solving complex mathematical problems may be limited.
116
- - Toxicity: The model could inadvertently generate responses containing inappropriate or harmful content.
117
-
118
- ## Acknowledgments
119
- We extend our heartfelt gratitude to the open-source AI community; this endeavor would not have been possible without open source. SambaNova embraces the open-source community and aspires to actively contribute to this initiative.
120
-
121
- We would like to give a special thanks to the following groups:
122
- - Meta for open sourcing LLama 2 and open sourcing FLORES-200 dataset
123
- - Nguyen et al for open sourcing CulturaX dataset
124
- - CohereAI for releasing AYA-101 and open sourcing a multilingual instruction tuning dataset
125
- - EleutherAI for their open source evaluation framework
126
- - Hugging Face-H4 team for open source the zephyr training recipe and alignment handbook repo
127
-
128
-
129
- ## Cite SambaLingo
130
- ```
131
- @misc{csaki2024sambalingo,
132
- title={SambaLingo: Teaching Large Language Models New Languages},
133
- author={Zoltan Csaki and Bo Li and Jonathan Li and Qiantong Xu and Pian Pawakapan and Leon Zhang and Yun Du and Hengyu Zhao and Changran Hu and Urmish Thakker},
134
- year={2024},
135
- eprint={2404.05829},
136
- archivePrefix={arXiv},
137
- primaryClass={cs.CL}
138
- }
139
- ```