jmvcoelho commited on
Commit
7dd33ba
·
verified ·
1 Parent(s): e28c8ff

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model:
5
+ - microsoft/deberta-v3-base
6
+ pipeline_tag: text-classification
7
+ ---
8
+ Binary classification model for ad-detection on QA Systems.
9
+
10
+ ## Sample usage
11
+
12
+ ```python
13
+ import torch
14
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
15
+
16
+ classifier_model_path = "jmvcoelho/ad-classifier-v0.1"
17
+ tokenizer = AutoTokenizer.from_pretrained(classifier_model_path)
18
+ model = AutoModelForSequenceClassification.from_pretrained(classifier_model_path)
19
+ model.eval()
20
+
21
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
22
+ model.to(device)
23
+
24
+ def classify(passages):
25
+ inputs = tokenizer(
26
+ passages, padding=True, truncation=True, max_length=512, return_tensors="pt"
27
+ )
28
+ inputs = {k: v.to(device) for k, v in inputs.items()}
29
+ with torch.no_grad():
30
+ outputs = model(**inputs)
31
+ logits = outputs.logits
32
+ predictions = torch.argmax(logits, dim=-1)
33
+ return predictions.cpu().tolist()
34
+
35
+ preds = classify(["sample_text_1", "sample_text_2"])
36
+ ```
37
+
38
+
39
+ ## Version
40
+
41
+ - v0.0: Trained with the official data from Webis Generated Native Ads 2024
42
+ - v0.1: Trained with v0.0 data + new synthetic data
43
+ - **v0.2**: Similar to v0.1, but include more diversity in ad placement startegies through prompting.
44
+
45
+
46
+ ## New Synthetic Data
47
+
48
+ Objective: Given (query, answer) pair, generate new_answer which contains an advertisement.
49
+
50
+ ### Initial Data:
51
+
52
+ - queries: Obtained from MS-MARCO V2.1 QA task. 150K subset of queries that are associated with a "well formed answer"
53
+ - answer: Generated with Qwen2.5-7B-Instruct using RAG with 10 passages (from our model.)
54
+
55
+ ### Models used for generation
56
+
57
+
58
+ Each model generated for 1/4th of the (query, answer) pairs
59
+ - Gemma-2-9b-it
60
+ - LLaMA-3.1-8B-Instruct
61
+ - Mistral-7B-Instruct
62
+ - Qwen2.5-7B-Instruct
63
+
64
+ ### Prompts
65
+
66
+ One of twelve prompts is chosen at random.
67
+ Prompts can be found under `files/*.prompt`.