Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
base_model:
|
| 5 |
+
- microsoft/deberta-v3-base
|
| 6 |
+
pipeline_tag: text-classification
|
| 7 |
+
---
|
| 8 |
+
Binary classification model for ad-detection on QA Systems.
|
| 9 |
+
|
| 10 |
+
## Sample usage
|
| 11 |
+
|
| 12 |
+
```
|
| 13 |
+
import torch
|
| 14 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 15 |
+
|
| 16 |
+
classifier_model_path = "jmvcoelho/ad-classifier-v0.0"
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(classifier_model_path)
|
| 18 |
+
model = AutoModelForSequenceClassification.from_pretrained(classifier_model_path)
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
model.to(device)
|
| 23 |
+
|
| 24 |
+
def classify(passages):
|
| 25 |
+
inputs = tokenizer(
|
| 26 |
+
passages, padding=True, truncation=True, max_length=512, return_tensors="pt"
|
| 27 |
+
)
|
| 28 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
outputs = model(**inputs)
|
| 31 |
+
logits = outputs.logits
|
| 32 |
+
predictions = torch.argmax(logits, dim=-1)
|
| 33 |
+
return predictions.cpu().tolist()
|
| 34 |
+
|
| 35 |
+
preds = classify(["sample_text_1", "sample_text_2"])
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Version
|
| 40 |
+
|
| 41 |
+
- **v0.0:** Trained with the official data from Webis Generated Native Ads 2024
|
| 42 |
+
- v0.1: Trained with v0.0 data + new synthetic data
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
## Webis Generated Native Ads 2024
|
| 46 |
+
|
| 47 |
+
**Paper:** [Detecting Generated Native Ads in Conversational Search](https://dl.acm.org/doi/10.1145/3589335.3651489)
|
| 48 |
+
|
| 49 |
+
**Data summary:**
|
| 50 |
+
- YouChat and Microsoft Copilot were used to generate answers for competitve keywork queries;
|
| 51 |
+
- GPT-4 turbo was used to insert one advertisment into the answer;
|
| 52 |
+
- This creates triples (query, answer_with_ad, answer_without_ad)
|
| 53 |
+
- The classifier in this repo was trained to assign 0 to answer_without_ad, and 1 to answer_with_ad.
|