--- base_model: jmaczan/wav2vec2-large-xls-r-300m-dysarthria license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-dysarthria-big-dataset results: [] --- # wav2vec2-large-xls-r-300m-dysarthria-big-dataset This model is a fine-tuned version of [jmaczan/wav2vec2-large-xls-r-300m-dysarthria](https://huggingface.co/jmaczan/wav2vec2-large-xls-r-300m-dysarthria) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0313 - Wer: 0.28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 3.1965 | 1.6 | 200 | 1.7709 | 0.88 | | 1.6135 | 3.2 | 400 | 1.1347 | 0.764 | | 1.1769 | 4.8 | 600 | 0.9348 | 0.722 | | 0.8155 | 6.4 | 800 | 0.5330 | 0.576 | | 0.5961 | 8.0 | 1000 | 0.3927 | 0.504 | | 0.4436 | 9.6 | 1200 | 0.3171 | 0.488 | | 0.3581 | 11.2 | 1400 | 0.2877 | 0.512 | | 0.2931 | 12.8 | 1600 | 0.1590 | 0.354 | | 0.219 | 14.4 | 1800 | 0.1370 | 0.326 | | 0.1912 | 16.0 | 2000 | 0.1362 | 0.262 | | 0.1543 | 17.6 | 2200 | 0.0823 | 0.238 | | 0.1323 | 19.2 | 2400 | 0.0764 | 0.272 | | 0.1095 | 20.8 | 2600 | 0.0649 | 0.272 | | 0.0909 | 22.4 | 2800 | 0.0537 | 0.274 | | 0.0807 | 24.0 | 3000 | 0.0499 | 0.248 | | 0.0618 | 25.6 | 3200 | 0.0499 | 0.318 | | 0.0573 | 27.2 | 3400 | 0.0414 | 0.252 | | 0.0456 | 28.8 | 3600 | 0.0313 | 0.28 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.2.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1