File size: 5,665 Bytes
6bf848f
901bee6
12ce037
595f6ec
 
901bee6
 
b8862ab
 
80e1091
901bee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ce037
 
 
 
 
 
 
 
 
94c1746
12ce037
94c1746
12ce037
 
 
 
 
a1bf35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ce037
 
 
 
 
 
 
e45d457
12ce037
 
 
e45d457
12ce037
 
 
 
 
 
901bee6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
license: other
library_name: transformers
base_model:
- Qwen/Qwen2.5-3B
datasets:
- BAAI/Infinity-Instruct
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-3B-Infinity-Instruct-0625
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 35.58
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 26.91
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 2.04
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 2.57
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.13
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
      name: Open LLM Leaderboard
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->


## Model Details

This is the model fine-tuned in [this blog](https://huggingface.co/blog/jlzhou/distributed-sft-with-trl-and-deepspeed-part2).

This model is fine-tuned on [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B), with [BAAI/Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct) dataset (subset 0625). You can find more details in the blog post.

## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "jlzhou/Qwen2.5-3B-Infinity-Instruct-0625"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

This model is trained on <https://huggingface.co/datasets/BAAI/Infinity-Instruct>

#### Training Hyperparameters

This model follows the recommended hyperparameters from <https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B#training-details>

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/jlzhou__Qwen2.5-3B-Infinity-Instruct-0625-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |16.61|
|IFEval (0-Shot)    |35.58|
|BBH (3-Shot)       |26.91|
|MATH Lvl 5 (4-Shot)| 2.04|
|GPQA (0-shot)      | 2.57|
|MuSR (0-shot)      | 8.13|
|MMLU-PRO (5-shot)  |24.43|