File size: 5,665 Bytes
6bf848f 901bee6 12ce037 595f6ec 901bee6 b8862ab 80e1091 901bee6 12ce037 94c1746 12ce037 94c1746 12ce037 a1bf35e 12ce037 e45d457 12ce037 e45d457 12ce037 901bee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
license: other
library_name: transformers
base_model:
- Qwen/Qwen2.5-3B
datasets:
- BAAI/Infinity-Instruct
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-3B-Infinity-Instruct-0625
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 35.58
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.91
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.04
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.13
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.43
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
This is the model fine-tuned in [this blog](https://huggingface.co/blog/jlzhou/distributed-sft-with-trl-and-deepspeed-part2).
This model is fine-tuned on [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B), with [BAAI/Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct) dataset (subset 0625). You can find more details in the blog post.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "jlzhou/Qwen2.5-3B-Infinity-Instruct-0625"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
This model is trained on <https://huggingface.co/datasets/BAAI/Infinity-Instruct>
#### Training Hyperparameters
This model follows the recommended hyperparameters from <https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Qwen2-7B#training-details>
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/jlzhou__Qwen2.5-3B-Infinity-Instruct-0625-details)
| Metric |Value|
|-------------------|----:|
|Avg. |16.61|
|IFEval (0-Shot) |35.58|
|BBH (3-Shot) |26.91|
|MATH Lvl 5 (4-Shot)| 2.04|
|GPQA (0-shot) | 2.57|
|MuSR (0-shot) | 8.13|
|MMLU-PRO (5-shot) |24.43|
|