Last commit not found
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py | |
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48 | |
# Copyright (c) 2022, Tri Dao. | |
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. | |
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py | |
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py | |
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py | |
import importlib.util | |
import logging | |
import re | |
from collections import OrderedDict | |
from collections.abc import Sequence | |
from functools import partial | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers import AutoTokenizer, PretrainedConfig | |
from transformers.modeling_outputs import (MaskedLMOutput, | |
SequenceClassifierOutput) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.models.bert.modeling_bert import ( | |
BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput) | |
from transformers.models.xlm_roberta.modeling_xlm_roberta import \ | |
XLMRobertaLMHead | |
from .block import Block | |
from .configuration_xlm_roberta import XLMRobertaFlashConfig | |
from .embedding import XLMRobertaEmbeddings | |
from .mha import MHA | |
from .mlp import FusedMLP, Mlp | |
from .xlm_padding import index_first_axis_residual, pad_input, unpad_input | |
try: | |
from flash_attn.ops.fused_dense import FusedDense | |
except ImportError: | |
FusedDense = None | |
try: | |
from flash_attn.ops.triton.layer_norm import layer_norm_fn | |
except ImportError: | |
layer_norm_fn = None | |
try: | |
from flash_attn.losses.cross_entropy import CrossEntropyLoss | |
except ImportError: | |
CrossEntropyLoss = torch.nn.CrossEntropyLoss | |
try: | |
from tqdm.autonotebook import trange | |
except ImportError: | |
trange = None | |
logger = logging.getLogger(__name__) | |
def get_use_flash_attn(config: XLMRobertaFlashConfig): | |
if not getattr(config, "use_flash_attn", False) or not torch.cuda.is_available(): | |
return False | |
if importlib.util.find_spec("flash_attn") is None: | |
logger.warning( | |
"flash_attn is not installed. Using PyTorch native attention implementation." | |
) | |
return False | |
return True | |
def create_mixer_cls(config, cross_attn=False, return_residual=False): | |
use_flash_attn = get_use_flash_attn(config) | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
rotary_kwargs = {} | |
if config.position_embedding_type == "rotary": | |
rotary_kwargs["rotary_emb_dim"] = getattr( | |
config, "rotary_emb_dim", config.hidden_size / config.num_attention_heads | |
) | |
rotary_kwargs["rotary_emb_base"] = config.rotary_emb_base | |
rotary_kwargs["rotary_emb_scale_base"] = getattr( | |
config, "rotary_emb_scale_base", None | |
) | |
rotary_kwargs["rotary_emb_interleaved"] = getattr( | |
config, "rotary_emb_interleaved", False | |
) | |
mixer_cls = partial( | |
MHA, | |
num_heads=config.num_attention_heads, | |
cross_attn=cross_attn, | |
dropout=config.attention_probs_dropout_prob, | |
causal=False, | |
fused_bias_fc=fused_bias_fc, | |
use_flash_attn=use_flash_attn, | |
return_residual=return_residual, | |
use_alibi=config.position_embedding_type == "alibi", | |
**rotary_kwargs, | |
) | |
return mixer_cls | |
def create_mlp_cls(config, layer_idx=None, return_residual=False): | |
inner_dim = config.intermediate_size | |
fused_mlp = getattr(config, "fused_mlp", False) | |
if fused_mlp: | |
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( | |
"fused_mlp only " "supports approximate gelu" | |
) | |
if not fused_mlp: | |
approximate = ( | |
"tanh" | |
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] | |
else "none" | |
) | |
mlp_cls = partial( | |
Mlp, | |
hidden_features=inner_dim, | |
activation=partial(F.gelu, approximate=approximate), | |
return_residual=return_residual, | |
) | |
else: | |
if FusedMLP is None: | |
raise ImportError("fused_dense is not installed") | |
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) | |
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer | |
if isinstance(mlp_checkpoint_lvl, Sequence): | |
assert layer_idx is not None | |
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] | |
mlp_cls = partial( | |
FusedMLP, | |
hidden_features=inner_dim, | |
checkpoint_lvl=mlp_checkpoint_lvl, | |
return_residual=return_residual, | |
) | |
return mlp_cls | |
def create_block(config, layer_idx=None): | |
last_layer_subset = getattr(config, "last_layer_subset", False) | |
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 | |
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the | |
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects | |
# one layer) so we just choose not to return residual in this case. | |
return_residual = not cross_attn | |
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) | |
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) | |
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) | |
block = Block( | |
config.hidden_size, | |
mixer_cls, | |
mlp_cls, | |
norm_cls=norm_cls, | |
prenorm=False, | |
resid_dropout1=config.hidden_dropout_prob, | |
resid_dropout2=config.hidden_dropout_prob, | |
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), | |
return_residual=return_residual, | |
) | |
return block | |
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 | |
def _init_weights(module, initializer_range=0.02): | |
if isinstance(module, nn.Linear): | |
nn.init.normal_(module.weight, std=initializer_range) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, std=initializer_range) | |
if module.padding_idx is not None: | |
nn.init.zeros_(module.weight[module.padding_idx]) | |
class XLMRobertaEncoder(nn.Module): | |
def __init__(self, config: XLMRobertaFlashConfig): | |
super().__init__() | |
self.use_flash_attn = get_use_flash_attn(config) | |
self.use_reentrant = config.use_reentrant | |
self.layers = nn.ModuleList( | |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] | |
) | |
self._grad_checkpointing = False | |
def gradient_checkpointing(self): | |
return self._grad_checkpointing | |
def gradient_checkpointing(self, value): | |
self._grad_checkpointing = value | |
def forward( | |
self, hidden_states, key_padding_mask=None, subset_mask=None, adapter_mask=None | |
): | |
"""If subset_mask is not None, we only want output for the subset of the sequence. | |
This means that we only compute the last layer output for these tokens. | |
subset_mask: (batch, seqlen), dtype=torch.bool | |
""" | |
if key_padding_mask is None or not self.use_flash_attn: | |
mixer_kwargs = {"adapter_mask": adapter_mask} | |
if key_padding_mask is not None: | |
mixer_kwargs["key_padding_mask"] = key_padding_mask.bool() | |
for layer in self.layers: | |
if self._grad_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
layer, | |
hidden_states, | |
use_reentrant=self.use_reentrant, | |
mixer_kwargs=mixer_kwargs, | |
) | |
else: | |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) | |
if subset_mask is not None: | |
hidden_states = hidden_states[subset_mask] | |
else: | |
batch, seqlen = hidden_states.shape[:2] | |
hidden_states, indices, cu_seqlens, max_seqlen_in_batch, cu_adapter_mask = ( | |
unpad_input(hidden_states, key_padding_mask, adapter_mask) | |
) | |
mixer_kwargs = { | |
"cu_seqlens": cu_seqlens, | |
"max_seqlen": max_seqlen_in_batch, | |
"adapter_mask": cu_adapter_mask, | |
} | |
if subset_mask is None: | |
for layer in self.layers: | |
if self._grad_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
layer, | |
hidden_states, | |
use_reentrant=self.use_reentrant, | |
mixer_kwargs=mixer_kwargs, | |
) | |
else: | |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) | |
hidden_states = pad_input(hidden_states, indices, batch, seqlen) | |
else: | |
for layer in self.layers[:-1]: | |
if self._grad_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
layer, | |
hidden_states, | |
use_reentrant=self.use_reentrant, | |
mixer_kwargs=mixer_kwargs, | |
) | |
else: | |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) | |
if key_padding_mask is not None: | |
subset_idx = torch.nonzero( | |
subset_mask[key_padding_mask], as_tuple=False | |
).flatten() | |
subset_seqlens = (subset_mask & key_padding_mask).sum( | |
dim=-1, dtype=torch.int32 | |
) | |
subset_cu_seqlens = F.pad( | |
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), | |
(1, 0), | |
) | |
else: | |
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() | |
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) | |
subset_cu_seqlens = F.pad( | |
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), | |
(1, 0), | |
) | |
hidden_states_subset, hidden_states = index_first_axis_residual( | |
hidden_states, subset_idx | |
) | |
# It's ok to set max_seqlen_q to be much larger | |
mixer_kwargs = { | |
"x_kv": hidden_states, | |
"cu_seqlens": subset_cu_seqlens, | |
"max_seqlen": max_seqlen_in_batch, | |
"cu_seqlens_k": cu_seqlens, | |
"max_seqlen_k": max_seqlen_in_batch, | |
} | |
if self._grad_checkpointing: | |
torch.utils.checkpoint.checkpoint( | |
self.layers[-1], | |
hidden_states_subset, | |
use_reentrant=self.use_reentrant, | |
mixer_kwargs=mixer_kwargs, | |
) | |
else: | |
hidden_states = self.layers[-1]( | |
hidden_states_subset, mixer_kwargs=mixer_kwargs | |
) | |
return hidden_states | |
class XLMRobertaPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.dense = linear_cls(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states, pool=True, adapter_mask=None): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states | |
if adapter_mask is not None: | |
unique_tasks = torch.unique(adapter_mask) | |
pool_dtype = next(self.dense.parameters()).dtype | |
pooled_output = torch.empty( | |
first_token_tensor.shape[0], | |
self.dense.out_features, | |
dtype=pool_dtype, | |
device=first_token_tensor.device, | |
) | |
for task_id in unique_tasks: | |
task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0] | |
task_first_token_tensor = first_token_tensor[task_indices] | |
task_pooled_output = self.dense( | |
task_first_token_tensor, task_id=task_id | |
) | |
pooled_output[task_indices] = task_pooled_output | |
else: | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class XLMRobertaPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) | |
if self.fused_dropout_add_ln and layer_norm_fn is None: | |
raise ImportError("Triton is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.dense = linear_cls(config.hidden_size, config.hidden_size) | |
approximate = ( | |
"tanh" | |
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] | |
else "none" | |
) | |
self.transform_act_fn = nn.GELU(approximate=approximate) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
if not self.fused_dropout_add_ln: | |
hidden_states = self.layer_norm(hidden_states) | |
else: | |
hidden_states = layer_norm_fn( | |
hidden_states, | |
self.layer_norm.weight, | |
self.layer_norm.bias, | |
eps=self.layer_norm.eps, | |
) | |
return hidden_states | |
class XLMRobertaLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.transform = XLMRobertaPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class XLMRobertaPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = XLMRobertaLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class XLMRobertaPreTrainedModel(PreTrainedModel): | |
"""An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = XLMRobertaFlashConfig | |
base_model_prefix = "roberta" | |
supports_gradient_checkpointing = True | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, XLMRobertaEncoder): | |
module.gradient_checkpointing = value | |
def from_pretrained( | |
cls, | |
*args, | |
**kwargs, | |
): | |
if not "torch_dtype" in kwargs: | |
kwargs["torch_dtype"] = "auto" | |
return super().from_pretrained(*args, **kwargs) | |
class XLMRobertaModel(XLMRobertaPreTrainedModel): | |
def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True): | |
super().__init__(config) | |
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
if config.vocab_size % self.pad_vocab_size_multiple != 0: | |
config.vocab_size += self.pad_vocab_size_multiple - ( | |
config.vocab_size % self.pad_vocab_size_multiple | |
) | |
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) | |
if self.fused_dropout_add_ln and layer_norm_fn is None: | |
raise ImportError("Triton is not installed") | |
assert config.hidden_act in [ | |
"gelu", | |
"gelu_new", | |
"gelu_fast", | |
"gelu_pytorch_tanh", | |
] | |
self.embeddings = XLMRobertaEmbeddings( | |
config.hidden_size, | |
config.vocab_size, | |
( | |
config.max_position_embeddings | |
if config.position_embedding_type == "absolute" | |
else -1 | |
), | |
config.type_vocab_size, | |
padding_idx=config.pad_token_id, | |
) | |
self.emb_drop = nn.Dropout(config.hidden_dropout_prob) | |
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.encoder = XLMRobertaEncoder(config) | |
self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None | |
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
self.name_or_path, trust_remote_code=True | |
) | |
self._rotary_emb_base = config.rotary_emb_base | |
def encode( | |
self: "XLMRobertaModel", | |
sentences: Union[str, List[str]], | |
batch_size: int = 32, | |
show_progress_bar: Optional[bool] = None, | |
output_value: str = "sentence_embedding", | |
convert_to_numpy: bool = True, | |
convert_to_tensor: bool = False, | |
device: Optional[torch.device] = None, | |
normalize_embeddings: bool = False, | |
truncate_dim: Optional[int] = None, | |
adapter_mask: Optional[torch.Tensor] = None, | |
task_type: Optional[str] = None, | |
**tokenizer_kwargs, | |
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]: | |
""" | |
Computes sentence embeddings | |
Args: | |
sentences(`str` or `List[str]`): | |
Sentence or sentences to be encoded | |
batch_size(`int`, *optional*, defaults to 32): | |
Batch size for the computation | |
show_progress_bar(`bool`, *optional*, defaults to None): | |
Show a progress bar when encoding sentences. | |
If set to None, progress bar is only shown when | |
`logger.level == logging.INFO` or `logger.level == logging.DEBUG`. | |
output_value(`str`, *optional*, defaults to 'sentence_embedding'): | |
Default sentence_embedding, to get sentence embeddings. | |
Can be set to token_embeddings to get wordpiece token embeddings. | |
Set to None, to get all output values | |
convert_to_numpy(`bool`, *optional*, defaults to True): | |
If true, the output is a list of numpy vectors. | |
Else, it is a list of pytorch tensors. | |
convert_to_tensor(`bool`, *optional*, defaults to False): | |
If true, you get one large tensor as return. | |
Overwrites any setting from convert_to_numpy | |
device(`torch.device`, *optional*, defaults to None): | |
Which torch.device to use for the computation | |
normalize_embeddings(`bool`, *optional*, defaults to False): | |
If set to true, returned vectors will have length 1. In that case, the | |
faster dot-product (util.dot_score) instead of cosine similarity can | |
be used. | |
truncate_dim(`int`, *optional*, defaults to None): | |
The dimension to truncate sentence embeddings to. `None` does no truncation. | |
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}): | |
Keyword arguments for the tokenizer | |
Returns: | |
By default, a list of tensors is returned. | |
If convert_to_tensor, a stacked tensor is returned. | |
If convert_to_numpy, a numpy matrix is returned. | |
""" | |
is_training = self.training | |
self.eval() | |
if show_progress_bar is None: | |
show_progress_bar = ( | |
logger.getEffectiveLevel() == logging.INFO | |
or logger.getEffectiveLevel() == logging.DEBUG | |
) | |
if convert_to_tensor: | |
convert_to_numpy = False | |
if output_value != "sentence_embedding": | |
convert_to_tensor = False | |
convert_to_numpy = False | |
input_was_string = False | |
if isinstance(sentences, str) or not hasattr(sentences, "__len__"): | |
sentences = [sentences] | |
input_was_string = True | |
if device is not None: | |
self.to(device) | |
permutation = np.argsort([-len(i) for i in sentences]) | |
inverse_permutation = np.argsort(permutation) | |
sentences = [sentences[idx] for idx in permutation] | |
tokenizer_kwargs["padding"] = tokenizer_kwargs.get("padding", True) | |
tokenizer_kwargs["max_length"] = tokenizer_kwargs.get( | |
"max_length", self.tokenizer.init_kwargs.get("model_max_length", 8192) | |
) | |
tokenizer_kwargs["truncation"] = tokenizer_kwargs.get("truncation", True) | |
all_embeddings = [] | |
if trange is not None: | |
range_iter = trange( | |
0, | |
len(sentences), | |
batch_size, | |
desc="Encoding", | |
disable=not show_progress_bar, | |
) | |
else: | |
range_iter = range(0, len(sentences), batch_size) | |
lora_arguments = ( | |
{"adapter_mask": adapter_mask} if adapter_mask is not None else {} | |
) | |
for i in range_iter: | |
encoded_input = self.tokenizer( | |
sentences[i : i + batch_size], | |
return_tensors="pt", | |
**tokenizer_kwargs, | |
).to(self.device) | |
token_embs = self.forward(**encoded_input, **lora_arguments)[0] | |
# Accumulate in fp32 to avoid overflow | |
token_embs = token_embs.float() | |
if output_value == "token_embeddings": | |
raise NotImplementedError | |
elif output_value is None: | |
raise NotImplementedError | |
else: | |
if self.config.emb_pooler == "cls": | |
embeddings = self.cls_pooling( | |
token_embs, encoded_input["attention_mask"] | |
) | |
else: | |
embeddings = self.mean_pooling( | |
token_embs, encoded_input["attention_mask"] | |
) | |
if normalize_embeddings: | |
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) | |
if convert_to_numpy: | |
embeddings = embeddings.cpu() | |
all_embeddings.extend(embeddings) | |
all_embeddings = [all_embeddings[idx] for idx in inverse_permutation] | |
truncate_dim = truncate_dim or self.config.truncate_dim | |
if truncate_dim: | |
all_embeddings = self.truncate_embeddings(all_embeddings, truncate_dim) | |
if convert_to_tensor: | |
all_embeddings = torch.stack(all_embeddings) | |
elif convert_to_numpy: | |
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings]) | |
if input_was_string: | |
all_embeddings = all_embeddings[0] | |
self.train(is_training) | |
return all_embeddings | |
def truncate_embeddings(self, embeddings, truncate_dim): | |
if not self.config.matryoshka_dimensions: | |
logger.warning( | |
"Matryoshka embeddings are not supported, so dimension truncation will not be performed." | |
) | |
return embeddings | |
elif truncate_dim in self.config.matryoshka_dimensions: | |
return [tensor[:truncate_dim] for tensor in embeddings] | |
else: | |
raise ValueError( | |
f"The provided `truncate_dim` value of {truncate_dim} is not supported. " | |
f"Supported dimensions are {self.config.matryoshka_dimensions}." | |
) | |
def mean_pooling( | |
self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor | |
): | |
input_mask_expanded = ( | |
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
) | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( | |
input_mask_expanded.sum(1), min=1e-9 | |
) | |
def cls_pooling(self, token_embeddings: torch.Tensor, attention_mask: torch.Tensor): | |
return token_embeddings[:, 0] | |
def rotary_emb_base(self): | |
return self._rotary_emb_base | |
def rotary_emb_base(self, base): | |
if not isinstance(base, (int, float)): | |
raise TypeError("Base must be an integer or float") | |
logger.info(f"Changing RoPE base value to {base}") | |
for layer in self.encoder.layers: | |
layer.mixer.rotary_emb.base = base | |
self._rotary_emb_base = base | |
def forward( | |
self, | |
input_ids, | |
position_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
masked_tokens_mask=None, | |
return_dict=None, | |
**kwargs, | |
): | |
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining), | |
we only want the output for the masked tokens. This means that we only compute the last | |
layer output for these tokens. | |
masked_tokens_mask: (batch, seqlen), dtype=torch.bool | |
""" | |
adapter_mask = kwargs.pop("adapter_mask", None) | |
if kwargs: | |
for key, value in kwargs.items(): | |
if value is not None: | |
logger.warning( | |
"Flash attention implementation does not support kwargs: %s", | |
key, | |
) | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
hidden_states = self.embeddings( | |
input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
adapter_mask=adapter_mask, | |
) | |
# TD [2022-12:18]: Don't need to force residual in fp32 | |
# BERT puts embedding LayerNorm before embedding dropout. | |
if not self.fused_dropout_add_ln: | |
hidden_states = self.emb_ln(hidden_states) | |
else: | |
hidden_states = layer_norm_fn( | |
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps | |
) | |
hidden_states = self.emb_drop(hidden_states) | |
if masked_tokens_mask is not None: | |
batch_size, seqlen = input_ids.shape[:2] | |
# We also need the first column for the CLS token | |
first_col_mask = torch.zeros( | |
batch_size, seqlen, dtype=torch.bool, device=input_ids.device | |
) | |
first_col_mask[:, 0] = True | |
subset_mask = masked_tokens_mask | first_col_mask | |
else: | |
subset_mask = None | |
sequence_output = self.encoder( | |
hidden_states, | |
key_padding_mask=attention_mask, | |
subset_mask=subset_mask, | |
adapter_mask=adapter_mask, | |
) | |
if masked_tokens_mask is None: | |
pooled_output = ( | |
self.pooler(sequence_output, adapter_mask=adapter_mask) | |
if self.pooler is not None | |
else None | |
) | |
else: | |
# TD [2022-03-01]: the indexing here is very tricky. | |
if attention_mask is not None: | |
subset_idx = subset_mask[attention_mask] | |
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] | |
sequence_output = sequence_output[ | |
masked_tokens_mask[attention_mask][subset_idx] | |
] | |
else: | |
pool_input = sequence_output[first_col_mask[subset_mask]] | |
sequence_output = sequence_output[masked_tokens_mask[subset_mask]] | |
pooled_output = ( | |
self.pooler(pool_input, pool=False, adapter_mask=adapter_mask) | |
if self.pooler is not None | |
else None | |
) | |
if not return_dict: | |
return sequence_output, pooled_output | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
) | |
class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel): | |
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
if config.is_decoder: | |
logger.warning( | |
"If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " | |
"bi-directional self-attention." | |
) | |
self.roberta = XLMRobertaModel(config, add_pooling_layer=False) | |
self.lm_head = XLMRobertaLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.roberta.embeddings.word_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` | |
kwargs (`Dict[str, any]`, optional, defaults to *{}*): | |
Used to hide legacy arguments that have been deprecated. | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.lm_head(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(prediction_scores.device) | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct( | |
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) | |
) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ( | |
((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
) | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def remap_state_dict(state_dict, config: PretrainedConfig): | |
""" | |
Map the state_dict of a Huggingface BERT model to be flash_attn compatible. | |
""" | |
# LayerNorm | |
def key_mapping_ln_gamma_beta(key): | |
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) | |
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) | |
return key | |
state_dict = OrderedDict( | |
(key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items() | |
) | |
# Layers | |
def key_mapping_layers(key): | |
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key) | |
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key) | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", | |
r"bert.encoder.layers.\1.norm1.\2", | |
key, | |
) | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", | |
r"bert.encoder.layers.\1.norm2.\2", | |
key, | |
) | |
key = re.sub( | |
r"^cls.predictions.transform.LayerNorm.(weight|bias)", | |
r"cls.predictions.transform.layer_norm.\1", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLP | |
def key_mapping_mlp(key): | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)", | |
r"bert.encoder.layers.\1.mlp.fc1.\2", | |
key, | |
) | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)", | |
r"bert.encoder.layers.\1.mlp.fc2.\2", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# Attention | |
last_layer_subset = getattr(config, "last_layer_subset", False) | |
for d in range(config.num_hidden_layers): | |
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight") | |
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight") | |
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight") | |
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias") | |
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias") | |
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias") | |
if not (last_layer_subset and d == config.num_hidden_layers - 1): | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( | |
[Wq, Wk, Wv], dim=0 | |
) | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat( | |
[bq, bk, bv], dim=0 | |
) | |
else: | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat( | |
[Wk, Wv], dim=0 | |
) | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat( | |
[bk, bv], dim=0 | |
) | |
def key_mapping_attn(key): | |
return re.sub( | |
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)", | |
r"bert.encoder.layers.\1.mixer.out_proj.\2", | |
key, | |
) | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
def key_mapping_decoder_bias(key): | |
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) | |
state_dict = OrderedDict( | |
(key_mapping_decoder_bias(k), v) for k, v in state_dict.items() | |
) | |
# Word embedding | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
if pad_vocab_size_multiple > 1: | |
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] | |
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) | |
) | |
decoder_weight = state_dict["cls.predictions.decoder.weight"] | |
state_dict["cls.predictions.decoder.weight"] = F.pad( | |
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) | |
) | |
# If the vocab was padded, we want to set the decoder bias for those padded indices to be | |
# strongly negative (i.e. the decoder shouldn't predict those indices). | |
# TD [2022-05-09]: I don't think it affects the MLPerf training. | |
decoder_bias = state_dict["cls.predictions.decoder.bias"] | |
state_dict["cls.predictions.decoder.bias"] = F.pad( | |
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 | |
) | |
return state_dict | |
def inv_remap_state_dict(state_dict, config: PretrainedConfig): | |
""" | |
Map the state_dict of a flash_attn model to be Huggingface BERT compatible. | |
This function is meant to be the inverse of remap_state_dict. | |
""" | |
# Word embedding | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
if pad_vocab_size_multiple > 1: | |
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] | |
decoder_weight = state_dict["cls.predictions.decoder.weight"] | |
decoder_bias = state_dict["cls.predictions.decoder.bias"] | |
# unpad embeddings | |
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[ | |
: config.orig_vocab_size, : | |
] | |
state_dict["cls.predictions.decoder.weight"] = decoder_weight[ | |
: config.orig_vocab_size, : | |
] | |
state_dict["cls.predictions.decoder.bias"] = decoder_bias[ | |
: config.orig_vocab_size | |
] | |
for d in range(config.num_hidden_layers): | |
last_layer_subset = getattr(config, "last_layer_subset", False) | |
if not last_layer_subset or d != (config.num_hidden_layers - 1): | |
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight") | |
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias") | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = ( | |
Wqkv_weights[: Wqkv_weights.shape[0] // 3, :] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = ( | |
Wqkv_weights[ | |
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, : | |
] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = ( | |
Wqkv_weights[2 * Wqkv_weights.shape[0] // 3 :, :] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = ( | |
Wqkv_biases[: Wqkv_biases.shape[0] // 3] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = ( | |
Wqkv_biases[Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = ( | |
Wqkv_biases[2 * Wqkv_biases.shape[0] // 3 :] | |
) | |
else: | |
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight") | |
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight") | |
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias") | |
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias") | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = ( | |
Wq_weight | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = ( | |
Wkv_weights[: Wkv_weights.shape[0] // 2, :] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = ( | |
Wkv_weights[Wkv_weights.shape[0] // 2 :, :] | |
) | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[ | |
: Wkv_biases.shape[0] // 2 | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = ( | |
Wkv_biases[Wkv_biases.shape[0] // 2 :] | |
) | |
def inv_key_mapping_ln(key): | |
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key) | |
key = re.sub( | |
r"bert.encoder.layers.(\d+).norm1.(weight|bias)", | |
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2", | |
key, | |
) | |
key = re.sub( | |
r"bert.encoder.layers.(\d+).norm2.(weight|bias)", | |
r"bert.encoder.layers.\1.output.LayerNorm.\2", | |
key, | |
) | |
key = re.sub( | |
r"cls.predictions.transform.layer_norm.(weight|bias)", | |
r"cls.predictions.transform.LayerNorm.\1", | |
key, | |
) | |
return key | |
def inv_key_mapping_ln_gamma_beta(key): | |
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key) | |
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key) | |
return key | |
def inv_key_mapping_layers(key): | |
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key) | |
def inv_key_mapping_mlp(key): | |
key = re.sub( | |
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)", | |
r"bert.encoder.layer.\1.intermediate.dense.\2", | |
key, | |
) | |
key = re.sub( | |
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)", | |
r"bert.encoder.layer.\1.output.dense.\2", | |
key, | |
) | |
return key | |
def inv_key_mapping_attn(key): | |
return re.sub( | |
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)", | |
r"bert.encoder.layer.\1.attention.output.dense.\2", | |
key, | |
) | |
def inv_key_mapping_decoder_bias(key): | |
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key) | |
state_dict = OrderedDict( | |
(inv_key_mapping_ln(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_layers(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_mlp(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_attn(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items() | |
) | |
return state_dict | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta | |
class XLMRobertaClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.dense = linear_cls(config.hidden_size, config.hidden_size) | |
classifier_dropout = ( | |
config.classifier_dropout | |
if config.classifier_dropout is not None | |
else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.out_proj = linear_cls(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = torch.tanh(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA | |
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.roberta = XLMRobertaModel(config, add_pooling_layer=False) | |
self.classifier = XLMRobertaClassificationHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = ( | |
return_dict if return_dict is not None else self.config.use_return_dict | |
) | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and ( | |
labels.dtype == torch.long or labels.dtype == torch.int | |
): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |