Commit
·
400c001
1
Parent(s):
a7b6c41
add usage example
Browse files
README.md
CHANGED
|
@@ -35,6 +35,40 @@ The results (on the human eval benchmark) are on par with other open-source mode
|
|
| 35 |
|
| 36 |
It still underperforms compared to other models like CodeLLama (53%) chat gpt 4 (82) or wizard coder (73.2), but these model are more than 30 times bigger.
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
## Finetuning details
|
| 39 |
|
| 40 |
We did full parameter fine-tuning and used a Nvidia a40 for 12 hours using a batch size of 128 and a micro-batch size of 8.
|
|
|
|
| 35 |
|
| 36 |
It still underperforms compared to other models like CodeLLama (53%) chat gpt 4 (82) or wizard coder (73.2), but these model are more than 30 times bigger.
|
| 37 |
|
| 38 |
+
## Usage
|
| 39 |
+
You can download and use the model like so:
|
| 40 |
+
```python
|
| 41 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 42 |
+
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
"jinaai/starcoder-1b-textbook", device_map='auto'
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained("jinaai/starcoder-1b-textbook")
|
| 48 |
+
|
| 49 |
+
prompt = '''
|
| 50 |
+
def unique(l: list):
|
| 51 |
+
"""Return sorted unique elements in a list
|
| 52 |
+
>>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])
|
| 53 |
+
[0, 2, 3, 5, 9, 123]
|
| 54 |
+
"""
|
| 55 |
+
'''
|
| 56 |
+
|
| 57 |
+
inputs = tokenizer(prompt.rstrip(), return_tensors="pt").to("cuda")
|
| 58 |
+
|
| 59 |
+
generation_output = model.generate(
|
| 60 |
+
**inputs,
|
| 61 |
+
max_new_tokens=128,
|
| 62 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 63 |
+
return_dict_in_generate=True,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
s = generation_output.sequences[0]
|
| 67 |
+
output = tokenizer.decode(s, skip_special_tokens=True)
|
| 68 |
+
|
| 69 |
+
print(output)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
## Finetuning details
|
| 73 |
|
| 74 |
We did full parameter fine-tuning and used a Nvidia a40 for 12 hours using a batch size of 128 and a micro-batch size of 8.
|