Update README.md
Browse files
README.md
CHANGED
@@ -1,61 +1,68 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
- generated_from_trainer
|
9 |
-
model-index:
|
10 |
-
- name: qwen2-1.5b-final-v1
|
11 |
-
results: []
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
## Model description
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
- learning_rate: 3e-05
|
39 |
-
- train_batch_size: 1
|
40 |
-
- eval_batch_size: 8
|
41 |
-
- seed: 42
|
42 |
-
- distributed_type: multi-GPU
|
43 |
-
- num_devices: 4
|
44 |
-
- gradient_accumulation_steps: 2
|
45 |
-
- total_train_batch_size: 8
|
46 |
-
- total_eval_batch_size: 32
|
47 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
-
- lr_scheduler_type: cosine
|
49 |
-
- lr_scheduler_warmup_steps: 1000
|
50 |
-
- training_steps: 25000
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
|
|
54 |
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
inference: false
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
library_name: transformers
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
+
<br><br>
|
|
|
11 |
|
12 |
+
<p align="center">
|
13 |
+
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
14 |
+
</p>
|
15 |
|
16 |
+
<p align="center">
|
17 |
+
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
18 |
+
</p>
|
19 |
|
|
|
20 |
|
21 |
+
# Intro
|
22 |
|
23 |
+
Jina Reader-LM is a series of models that convert HTML content to Markdown content, which is useful for content conversion tasks. The model is trained on a curated collection of HTML content and its corresponding Markdown content.
|
24 |
|
25 |
+
# Models
|
26 |
|
27 |
+
| Name | Context Length | Download |
|
28 |
+
|-----------------|-------------------|-----------------------------------------------------------------------|
|
29 |
+
| reader-lm-0.5b | 256K | [🤗 Hugging Face](https://huggingface.co/jinaai/reader-lm-0.5b) |
|
30 |
+
| reader-lm-1.5b | 256K | [🤗 Hugging Face](https://huggingface.co/jinaai/reader-lm-1.5b) |
|
31 |
+
| |
|
32 |
|
33 |
+
# Evaluation
|
34 |
|
35 |
+
TBD
|
36 |
|
37 |
+
# Quick Start
|
38 |
|
39 |
+
To use this model, you need to install `transformers`:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
```bash
|
42 |
+
pip install transformers<=4.43.4
|
43 |
+
```
|
44 |
|
45 |
+
Then, you can use the model as follows:
|
46 |
|
47 |
+
```python
|
48 |
+
# pip install transformers
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
checkpoint = "jinaai/qwen2-1.5b-reader"
|
51 |
|
52 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
55 |
|
56 |
+
# example html content
|
57 |
+
html_content = "<html><body><h1>Hello, world!</h1></body></html>"
|
58 |
+
|
59 |
+
messages = [{"role": "user", "content": html_content}]
|
60 |
+
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
|
61 |
+
|
62 |
+
print(input_text)
|
63 |
+
|
64 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
65 |
+
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
66 |
+
|
67 |
+
print(tokenizer.decode(outputs[0]))
|
68 |
+
```
|