Commit
·
b259b10
1
Parent(s):
8ccc3e7
update README
Browse filesSigned-off-by: jupyterjazz <[email protected]>
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- vidore
|
5 |
+
- colpali
|
6 |
+
- multimodal-embedding
|
7 |
+
- multilingual-embedding
|
8 |
+
- Text-to-Visual Document (T→VD) retrieval
|
9 |
+
- feature-extraction
|
10 |
+
- sentence-similarity
|
11 |
+
- mteb
|
12 |
+
language:
|
13 |
+
- multilingual
|
14 |
+
library_name: transformers
|
15 |
+
pipeline_tag: visual-document-retrieval
|
16 |
+
---
|
17 |
+
<br><br>
|
18 |
+
|
19 |
+
<p align="center">
|
20 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
21 |
+
</p>
|
22 |
+
|
23 |
+
|
24 |
+
<p align="center">
|
25 |
+
<b>The embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
26 |
+
</p>
|
27 |
+
|
28 |
+
# Jina Embeddings v4: Universal Embeddings for Multimodal Multilingual Retrieval
|
29 |
+
|
30 |
+
|
31 |
+
[Original Model](https://huggingface.co/jinaai/jina-embeddings-v4) | [Blog](https://jina.ai/news/jina-embeddings-v4-universal-embeddings-for-multimodal-multilingual-retrieval) | [Technical Report](https://arxiv.org/abs/2506.18902) | [API](https://jina.ai/embeddings)
|
32 |
+
|
33 |
+
|
34 |
+
## Model Overview
|
35 |
+
|
36 |
+
This repository hosts a vLLM-compatible version of [`jina-embeddings-v4`](https://huggingface.co/jinaai/jina-embeddings-v4) with the code adapter merged into the base `Qwen2.5-VL` weights. This architecture modification enables native compatibility with vLLM without requiring custom adapter-handling code.
|
37 |
+
|
38 |
+
|
39 |
+
## Usage
|
40 |
+
|
41 |
+
```python
|
42 |
+
import torch
|
43 |
+
from PIL import Image
|
44 |
+
|
45 |
+
from vllm import LLM
|
46 |
+
from vllm.config import PoolerConfig
|
47 |
+
from vllm.inputs.data import TextPrompt
|
48 |
+
|
49 |
+
# Initialize model
|
50 |
+
model = LLM(
|
51 |
+
model="jinaai/jina-embeddings-v4-vllm-code",
|
52 |
+
task="embed",
|
53 |
+
enforce_eager=True,
|
54 |
+
override_pooler_config=PoolerConfig(pooling_type="ALL", normalize=False),
|
55 |
+
dtype="float16",
|
56 |
+
)
|
57 |
+
|
58 |
+
# Create text prompts
|
59 |
+
query =query = "Find a function that prints a greeting message to the console"
|
60 |
+
query_prompt = TextPrompt(
|
61 |
+
prompt=f"Query: {query}"
|
62 |
+
)
|
63 |
+
|
64 |
+
passage = "def hello_world():\n print('Hello, World!')"
|
65 |
+
passage_prompt = TextPrompt(
|
66 |
+
prompt=f"Passage: {passage}"
|
67 |
+
)
|
68 |
+
|
69 |
+
# Create image prompt
|
70 |
+
image = Image.open("<path_to_image>")
|
71 |
+
image_prompt = TextPrompt(
|
72 |
+
prompt="<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n",
|
73 |
+
multi_modal_data={"image": image},
|
74 |
+
)
|
75 |
+
|
76 |
+
# Encode all prompts
|
77 |
+
prompts = [query_prompt, passage_prompt, image_prompt]
|
78 |
+
outputs = model.encode(prompts)
|
79 |
+
|
80 |
+
|
81 |
+
def get_embeddings(outputs):
|
82 |
+
VISION_START_TOKEN_ID, VISION_END_TOKEN_ID = 151652, 151653
|
83 |
+
|
84 |
+
embeddings = []
|
85 |
+
for output in outputs:
|
86 |
+
if VISION_START_TOKEN_ID in output.prompt_token_ids:
|
87 |
+
# Gather only vision tokens
|
88 |
+
img_start_pos = torch.where(
|
89 |
+
torch.tensor(output.prompt_token_ids) == VISION_START_TOKEN_ID
|
90 |
+
)[0][0]
|
91 |
+
img_end_pos = torch.where(
|
92 |
+
torch.tensor(output.prompt_token_ids) == VISION_END_TOKEN_ID
|
93 |
+
)[0][0]
|
94 |
+
embeddings_tensor = output.outputs.data.detach().clone()[
|
95 |
+
img_start_pos : img_end_pos + 1
|
96 |
+
]
|
97 |
+
else:
|
98 |
+
# Use all tokens for text-only prompts
|
99 |
+
embeddings_tensor = output.outputs.data.detach().clone()
|
100 |
+
|
101 |
+
# Pool and normalize embeddings
|
102 |
+
pooled_output = (
|
103 |
+
embeddings_tensor.sum(dim=0, dtype=torch.float32)
|
104 |
+
/ embeddings_tensor.shape[0]
|
105 |
+
)
|
106 |
+
embeddings.append(torch.nn.functional.normalize(pooled_output, dim=-1))
|
107 |
+
return embeddings
|
108 |
+
|
109 |
+
embeddings = get_embeddings(outputs)
|
110 |
+
```
|