--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: biomedbert-finetuned-ner results: [] --- # biomedbert-finetuned-ner This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4196 - Precision: 0.6579 - Recall: 0.6908 - F1: 0.6739 - Accuracy: 0.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 305 | 0.4210 | 0.6510 | 0.6708 | 0.6608 | 0.8526 | | 0.4865 | 2.0 | 610 | 0.4120 | 0.6555 | 0.6968 | 0.6755 | 0.8559 | | 0.4865 | 3.0 | 915 | 0.4196 | 0.6579 | 0.6908 | 0.6739 | 0.8581 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1