Update README.md
Browse files
README.md
CHANGED
@@ -76,6 +76,35 @@ scores = batch_scores[:, 1].exp().tolist()
|
|
76 |
print(scores) # [0.0020704232156276703, 0.9999990463256836] first document is not relevant, as expected
|
77 |
```
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# Citation
|
80 |
|
81 |
```bibtex
|
|
|
76 |
print(scores) # [0.0020704232156276703, 0.9999990463256836] first document is not relevant, as expected
|
77 |
```
|
78 |
|
79 |
+
# Training
|
80 |
+
|
81 |
+
We used [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune Mistral to create FollowIR-7B, with the following training script:
|
82 |
+
```bash
|
83 |
+
#!/bin/bash
|
84 |
+
accelerate launch src/train_bash.py \
|
85 |
+
--stage sft \
|
86 |
+
--do_train \
|
87 |
+
--model_name_or_path "mistralai/Mistral-7B-Instruct-v0.2" \
|
88 |
+
--dataset followIR-train \
|
89 |
+
--template mistral \
|
90 |
+
--output_dir OUTPUT \
|
91 |
+
--finetuning_type lora \
|
92 |
+
--lora_target q_proj,v_proj,o_proj,k_proj \
|
93 |
+
--overwrite_cache \
|
94 |
+
--per_device_train_batch_size 32 \
|
95 |
+
--gradient_accumulation_steps 1 \
|
96 |
+
--lr_scheduler_type cosine \
|
97 |
+
--logging_steps 2 \
|
98 |
+
--save_steps 29 \
|
99 |
+
--learning_rate 3e-5 \
|
100 |
+
--num_train_epochs 8.0 \
|
101 |
+
--plot_loss \
|
102 |
+
--max_length 2048 \
|
103 |
+
--lora_rank 8 \
|
104 |
+
--lora_alpha 16 \
|
105 |
+
--bf16
|
106 |
+
```
|
107 |
+
|
108 |
# Citation
|
109 |
|
110 |
```bibtex
|