jeffmeloy commited on
Commit
0ac0efa
·
verified ·
1 Parent(s): 97c42e5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - Qwen/Qwen2.5-7B
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - not-for-all-audiences
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ ---
12
+
13
+ ## Model Description
14
+
15
+ Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like:
16
+
17
+ Singular Value Decomposition:
18
+ - Input: Weight matrix A ∈ R^(m×n) # m = number of output features, n = number of input features
19
+ - Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension
20
+ - Filter values above numerical threshold (>1e-12) # removes numerical noise from computation
21
+
22
+ Distribution Normalization:
23
+ - Sum all singular values: S = Σσᵢ # S acts as normalization factor
24
+ - Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1
25
+
26
+ Entropy Calculation:
27
+ - Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content of distribution
28
+ - Calculate maximum possible entropy: H_max = log₂(n) # n = number of singular values
29
+ where n is the number of singular values # maximum entropy occurs when all dimensions contribute equally
30
+
31
+ Normalization:
32
+ - Final NER score = H/H_max # normalizes score to [0,1] range
33
+ - Results in value between 0 and 1 # 0 = single dimension dominance, 1 = perfect dimensional utilization
34
+ - Higher scores indicate more uniform dimensional utilization
35
+
36
+ ## Creating Composite Model
37
+
38
+ Code here: https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0/blob/main/ner_merge.py
39
+
40
+ Layer Analysis:
41
+ - Download base and fine-tuned models from Hugging Face Hub
42
+ - Calculate Normalized Effective Rank (NER) for each layer within each model
43
+
44
+ Layer Selection:
45
+ - Identify common layer structures across models
46
+ - Define model and layer name pairs that have highest NER for each layer based on their NER scores
47
+
48
+ Model Composition:
49
+ - Incrementally build a composite model using layer with highest NER from model pool.
50
+
51
+ Output Generation:
52
+ - Save merge reports documenting layer sources
53
+ - Copy config and tokenizer files from base model
54
+ - Save the composite model with complete weights # model ready to use
55
+
56
+ Configfile:
57
+
58
+ base_model: "Qwen/Qwen2.5-7B"
59
+
60
+ fine_tuned_models: # uncomment the models you want to merge
61
+
62
+ #- "Qwen/Qwen2.5-7B"
63
+
64
+ #- "Qwen/Qwen2.5-7B-Instruct"
65
+
66
+ #- "FourOhFour/Vapor_v2_7B"
67
+
68
+ #- "Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2"
69
+
70
+ #- "happzy2633/qwen2.5-7b-ins-v3"
71
+
72
+ #- "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2"
73
+
74
+ #- "HumanLLMs/Humanish-Qwen2.5-7B-Instruct"
75
+
76
+ #- "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored"
77
+
78
+ #- "Orion-zhen/Meissa-Qwen2.5-7B-Instruct"
79
+
80
+ #- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0"
81
+
82
+ #- "rombodawg/Rombos-LLM-V2.5-Qwen-7b"
83
+
84
+ #- "Cran-May/T.E-8.1"
85
+
86
+ #- "thomas-yanxin/XinYuan-Qwen2.5-7B-0917"
87
+
88
+ #- "beomi/Qwen2.5-7B-Instruct-kowiki-qa"
89
+
90
+ #- "Orion-zhen/Qwen2.5-7B-Gutenberg-KTO"
91
+
92
+ #- 'fblgit/cybertron-v4-qw7B-MGS'
93
+
94
+ #- 'nguyentd/FinancialAdvice-Qwen2.5-7B'
95
+
96
+ #- "Qwen/Qwen2.5-Coder-7B-Instruct"
97
+
98
+ #- "Qwen/Qwen2.5-Math-7B-Instruct"
99
+
100
+ #- "Qwen/Qwen2.5-Coder-7B"
101
+
102
+ #- "Qwen/Qwen2.5-Math-7B"
103
+
104
+ #- "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B"
105
+
106
+ #- "edgerunner-ai/EdgeRunner-Command-Nested"
107
+
108
+ #- "katanemo/Arch-Function-7B"
109
+
110
+ models_dir: "./input_models/"
111
+
112
+ output_dir: "./merged_model/"
113
+
114
+ metric_dir: "./metrics/"