Upload 5 files
Browse files
skyreelsinfer/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
|
4 |
+
class TaskType(str, Enum):
|
5 |
+
T2V = "text2video"
|
6 |
+
I2V = "image2video"
|
skyreelsinfer/offload.py
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import gc
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from diffusers.pipelines import DiffusionPipeline
|
9 |
+
from torchao.dtypes.affine_quantized_tensor import AffineQuantizedTensor
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class OffloadConfig:
|
14 |
+
# high_cpu_memory: Whether to use pinned memory for offload optimization. This can effectively prevent increased model offload latency caused by memory swapping.
|
15 |
+
high_cpu_memory: bool = True
|
16 |
+
# parameters_level: Whether to enable parameter-level offload. This further reduces VRAM requirements but may result in increased latency.
|
17 |
+
parameters_level: bool = False
|
18 |
+
# compiler_transformer: Whether to enable compilation optimization for the transformer.
|
19 |
+
compiler_transformer: bool = False
|
20 |
+
compiler_cache: str = "/tmp/compile_cache"
|
21 |
+
|
22 |
+
|
23 |
+
class HfHook:
|
24 |
+
def __init__(self):
|
25 |
+
device_id = os.environ.get("LOCAL_RANK", 0)
|
26 |
+
self.execution_device = f"cuda:{device_id}"
|
27 |
+
|
28 |
+
def detach_hook(self, module):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
class Offload:
|
33 |
+
def __init__(self) -> None:
|
34 |
+
self.active_models = []
|
35 |
+
self.active_models_ids = []
|
36 |
+
self.active_subcaches = {}
|
37 |
+
self.models = {}
|
38 |
+
self.verboseLevel = 0
|
39 |
+
self.models_to_quantize = []
|
40 |
+
self.pinned_modules_data = {}
|
41 |
+
self.blocks_of_modules = {}
|
42 |
+
self.blocks_of_modules_sizes = {}
|
43 |
+
self.compile = False
|
44 |
+
self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
|
45 |
+
self.last_reserved_mem_check = 0
|
46 |
+
self.loaded_blocks = {}
|
47 |
+
self.prev_blocks_names = {}
|
48 |
+
self.next_blocks_names = {}
|
49 |
+
device_id = os.environ.get("LOCAL_RANK", 0)
|
50 |
+
self.device_id = f"cuda:{device_id}"
|
51 |
+
self.default_stream = torch.cuda.default_stream(self.device_id) # torch.cuda.current_stream()
|
52 |
+
self.transfer_stream = torch.cuda.Stream()
|
53 |
+
self.async_transfers = False
|
54 |
+
self.last_run_model = None
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def offload(cls, pipeline: DiffusionPipeline, config: OffloadConfig = OffloadConfig()):
|
58 |
+
"""
|
59 |
+
Enable offloading for multiple models in the pipeline, supporting video generation inference on user-level GPUs.
|
60 |
+
pipe: the pipeline object
|
61 |
+
config: offload strategy configuration
|
62 |
+
"""
|
63 |
+
self = cls()
|
64 |
+
self.pinned_modules_data = {}
|
65 |
+
if config.parameters_level:
|
66 |
+
model_budgets = {
|
67 |
+
"transformer": 600 * 1024 * 1024,
|
68 |
+
"text_encoder": 3 * 1024 * 1024 * 1024,
|
69 |
+
"text_encoder_2": 3 * 1024 * 1024 * 1024,
|
70 |
+
}
|
71 |
+
self.async_transfers = True
|
72 |
+
else:
|
73 |
+
model_budgets = {}
|
74 |
+
|
75 |
+
device_id = os.getenv("LOCAL_RANK", 0)
|
76 |
+
torch.set_default_device(f"cuda:{device_id}")
|
77 |
+
pipeline.hf_device_map = torch.device(f"cuda:{device_id}")
|
78 |
+
pipe_or_dict_of_modules = pipeline.components
|
79 |
+
if config.compiler_transformer:
|
80 |
+
pipeline.transformer.to("cuda")
|
81 |
+
models = {
|
82 |
+
k: v
|
83 |
+
for k, v in pipe_or_dict_of_modules.items()
|
84 |
+
if isinstance(v, torch.nn.Module) and not (config.compiler_transformer and k == "transformer")
|
85 |
+
}
|
86 |
+
print_info = {k: type(v) for k, v in models.items()}
|
87 |
+
print(f"offload models: {print_info}")
|
88 |
+
if config.compiler_transformer:
|
89 |
+
pipeline.text_encoder.to("cpu")
|
90 |
+
pipeline.text_encoder_2.to("cpu")
|
91 |
+
torch.cuda.empty_cache()
|
92 |
+
pipeline.transformer.to("cuda")
|
93 |
+
pipeline.vae.to("cuda")
|
94 |
+
|
95 |
+
def move_text_encoder_to_gpu(pipe):
|
96 |
+
torch.cuda.empty_cache()
|
97 |
+
pipe.text_encoder.to("cuda")
|
98 |
+
pipe.text_encoder_2.to("cuda")
|
99 |
+
|
100 |
+
def move_text_encoder_to_cpu(pipe):
|
101 |
+
pipe.text_encoder.to("cpu")
|
102 |
+
pipe.text_encoder_2.to("cpu")
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
|
105 |
+
setattr(pipeline, "text_encoder_to_cpu", functools.partial(move_text_encoder_to_cpu, pipeline))
|
106 |
+
setattr(pipeline, "text_encoder_to_gpu", functools.partial(move_text_encoder_to_gpu, pipeline))
|
107 |
+
|
108 |
+
for k, module in pipe_or_dict_of_modules.items():
|
109 |
+
if isinstance(module, torch.nn.Module):
|
110 |
+
for submodule_name, submodule in module.named_modules():
|
111 |
+
if not hasattr(submodule, "_hf_hook"):
|
112 |
+
setattr(submodule, "_hf_hook", HfHook())
|
113 |
+
return self
|
114 |
+
|
115 |
+
sizeofbfloat16 = torch.bfloat16.itemsize
|
116 |
+
modelPinned = config.high_cpu_memory
|
117 |
+
# Pin in RAM models
|
118 |
+
# Calculate the VRAM requirements of the computational modules to determine whether parameters-level offload is necessary.
|
119 |
+
for model_name, curr_model in models.items():
|
120 |
+
curr_model.to("cpu").eval()
|
121 |
+
pinned_parameters_data = {}
|
122 |
+
current_model_size = 0
|
123 |
+
print(f"{model_name} move to pinned memory:{modelPinned}")
|
124 |
+
for p in curr_model.parameters():
|
125 |
+
if isinstance(p, AffineQuantizedTensor):
|
126 |
+
if not modelPinned and p.tensor_impl.scale.dtype == torch.float32:
|
127 |
+
p.tensor_impl.scale = p.tensor_impl.scale.to(torch.bfloat16)
|
128 |
+
current_model_size += torch.numel(p.tensor_impl.scale) * sizeofbfloat16
|
129 |
+
current_model_size += torch.numel(p.tensor_impl.float8_data) * sizeofbfloat16 / 2
|
130 |
+
if modelPinned:
|
131 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.pin_memory()
|
132 |
+
p.tensor_impl.scale = p.tensor_impl.scale.pin_memory()
|
133 |
+
pinned_parameters_data[p] = [p.tensor_impl.float8_data, p.tensor_impl.scale]
|
134 |
+
else:
|
135 |
+
p.data = p.data.to(torch.bfloat16) if p.data.dtype == torch.float32 else p.data.to(p.data.dtype)
|
136 |
+
current_model_size += torch.numel(p.data) * p.data.element_size()
|
137 |
+
if modelPinned:
|
138 |
+
p.data = p.data.pin_memory()
|
139 |
+
pinned_parameters_data[p] = p.data
|
140 |
+
|
141 |
+
for buffer in curr_model.buffers():
|
142 |
+
buffer.data = (
|
143 |
+
buffer.data.to(torch.bfloat16)
|
144 |
+
if buffer.data.dtype == torch.float32
|
145 |
+
else buffer.data.to(buffer.data.dtype)
|
146 |
+
)
|
147 |
+
current_model_size += torch.numel(buffer.data) * buffer.data.element_size()
|
148 |
+
if modelPinned:
|
149 |
+
buffer.data = buffer.data.pin_memory()
|
150 |
+
|
151 |
+
if model_name not in self.models:
|
152 |
+
self.models[model_name] = curr_model
|
153 |
+
|
154 |
+
curr_model_budget = model_budgets.get(model_name, 0)
|
155 |
+
if curr_model_budget > 0 and curr_model_budget > current_model_size:
|
156 |
+
model_budgets[model_name] = 0
|
157 |
+
|
158 |
+
if modelPinned:
|
159 |
+
pinned_buffers_data = {b: b.data for b in curr_model.buffers()}
|
160 |
+
pinned_parameters_data.update(pinned_buffers_data)
|
161 |
+
self.pinned_modules_data[model_name] = pinned_parameters_data
|
162 |
+
gc.collect()
|
163 |
+
torch.cuda.empty_cache()
|
164 |
+
|
165 |
+
# if config.compiler_transformer:
|
166 |
+
# module = pipeline.transformer
|
167 |
+
# print("wrap transformer forward")
|
168 |
+
# # gpu model wrap
|
169 |
+
# for submodule_name, submodule in module.named_modules():
|
170 |
+
# if not hasattr(submodule, "_hf_hook"):
|
171 |
+
# setattr(submodule, "_hf_hook", HfHook())
|
172 |
+
#
|
173 |
+
# forward_method = getattr(module, "forward")
|
174 |
+
#
|
175 |
+
# def wrap_unload_all(*args, **kwargs):
|
176 |
+
# self.unload_all("transformer")
|
177 |
+
# return forward_method(*args, **kwargs)
|
178 |
+
#
|
179 |
+
# setattr(module, "forward", functools.update_wrapper(wrap_unload_all, forward_method))
|
180 |
+
|
181 |
+
# wrap forward methods
|
182 |
+
for model_name, curr_model in models.items():
|
183 |
+
current_budget = model_budgets.get(model_name, 0)
|
184 |
+
current_size = 0
|
185 |
+
self.loaded_blocks[model_name] = None
|
186 |
+
cur_blocks_prefix, prev_blocks_name, cur_blocks_name, cur_blocks_seq = None, None, None, -1
|
187 |
+
|
188 |
+
for submodule_name, submodule in curr_model.named_modules():
|
189 |
+
# create a fake accelerate parameter so that the _execution_device property returns always "cuda"
|
190 |
+
if not hasattr(submodule, "_hf_hook"):
|
191 |
+
setattr(submodule, "_hf_hook", HfHook())
|
192 |
+
|
193 |
+
if not submodule_name:
|
194 |
+
continue
|
195 |
+
|
196 |
+
# usr parameters-level offload
|
197 |
+
if current_budget > 0:
|
198 |
+
if isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
|
199 |
+
if cur_blocks_prefix == None:
|
200 |
+
cur_blocks_prefix = submodule_name + "."
|
201 |
+
else:
|
202 |
+
if not submodule_name.startswith(cur_blocks_prefix):
|
203 |
+
cur_blocks_prefix = submodule_name + "."
|
204 |
+
cur_blocks_name, cur_blocks_seq = None, -1
|
205 |
+
else:
|
206 |
+
if cur_blocks_prefix is not None:
|
207 |
+
if submodule_name.startswith(cur_blocks_prefix):
|
208 |
+
num = int(submodule_name[len(cur_blocks_prefix) :].split(".")[0])
|
209 |
+
if num != cur_blocks_seq and (cur_blocks_name == None or current_size > current_budget):
|
210 |
+
prev_blocks_name = cur_blocks_name
|
211 |
+
cur_blocks_name = cur_blocks_prefix + str(num)
|
212 |
+
cur_blocks_seq = num
|
213 |
+
else:
|
214 |
+
cur_blocks_prefix = None
|
215 |
+
prev_blocks_name = None
|
216 |
+
cur_blocks_name = None
|
217 |
+
cur_blocks_seq = -1
|
218 |
+
|
219 |
+
if hasattr(submodule, "forward"):
|
220 |
+
submodule_forward = getattr(submodule, "forward")
|
221 |
+
if not callable(submodule_forward):
|
222 |
+
print("***")
|
223 |
+
continue
|
224 |
+
if len(submodule_name.split(".")) == 1:
|
225 |
+
self.hook_me(submodule, curr_model, model_name, submodule_name, submodule_forward)
|
226 |
+
else:
|
227 |
+
self.hook_me_light(
|
228 |
+
submodule, model_name, cur_blocks_name, submodule_forward, context=submodule_name
|
229 |
+
)
|
230 |
+
current_size = self.add_module_to_blocks(model_name, cur_blocks_name, submodule, prev_blocks_name)
|
231 |
+
|
232 |
+
gc.collect()
|
233 |
+
torch.cuda.empty_cache()
|
234 |
+
return self
|
235 |
+
|
236 |
+
def add_module_to_blocks(self, model_name, blocks_name, submodule, prev_block_name):
|
237 |
+
|
238 |
+
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
239 |
+
if entry_name in self.blocks_of_modules:
|
240 |
+
blocks_params = self.blocks_of_modules[entry_name]
|
241 |
+
blocks_params_size = self.blocks_of_modules_sizes[entry_name]
|
242 |
+
else:
|
243 |
+
blocks_params = []
|
244 |
+
self.blocks_of_modules[entry_name] = blocks_params
|
245 |
+
blocks_params_size = 0
|
246 |
+
if blocks_name != None:
|
247 |
+
prev_entry_name = None if prev_block_name == None else model_name + "/" + prev_block_name
|
248 |
+
self.prev_blocks_names[entry_name] = prev_entry_name
|
249 |
+
if not prev_block_name == None:
|
250 |
+
self.next_blocks_names[prev_entry_name] = entry_name
|
251 |
+
|
252 |
+
for p in submodule.parameters(recurse=False):
|
253 |
+
blocks_params.append(p)
|
254 |
+
if isinstance(p, AffineQuantizedTensor):
|
255 |
+
blocks_params_size += p.tensor_impl.float8_data.nbytes
|
256 |
+
blocks_params_size += p.tensor_impl.scale.nbytes
|
257 |
+
else:
|
258 |
+
blocks_params_size += p.data.nbytes
|
259 |
+
|
260 |
+
for p in submodule.buffers(recurse=False):
|
261 |
+
blocks_params.append(p)
|
262 |
+
blocks_params_size += p.data.nbytes
|
263 |
+
|
264 |
+
self.blocks_of_modules_sizes[entry_name] = blocks_params_size
|
265 |
+
|
266 |
+
return blocks_params_size
|
267 |
+
|
268 |
+
def can_model_be_cotenant(self, model_name):
|
269 |
+
cotenants_map = {
|
270 |
+
"text_encoder": ["vae", "text_encoder_2"],
|
271 |
+
"text_encoder_2": ["vae", "text_encoder"],
|
272 |
+
}
|
273 |
+
potential_cotenants = cotenants_map.get(model_name, None)
|
274 |
+
if potential_cotenants is None:
|
275 |
+
return False
|
276 |
+
for existing_cotenant in self.active_models_ids:
|
277 |
+
if existing_cotenant not in potential_cotenants:
|
278 |
+
return False
|
279 |
+
return True
|
280 |
+
|
281 |
+
@torch.compiler.disable()
|
282 |
+
def gpu_load_blocks(self, model_name, blocks_name, async_load=False):
|
283 |
+
if blocks_name != None:
|
284 |
+
self.loaded_blocks[model_name] = blocks_name
|
285 |
+
|
286 |
+
def cpu_to_gpu(stream_to_use, blocks_params, record_for_stream=None):
|
287 |
+
with torch.cuda.stream(stream_to_use):
|
288 |
+
for p in blocks_params:
|
289 |
+
if isinstance(p, AffineQuantizedTensor):
|
290 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cuda(
|
291 |
+
non_blocking=True, device=self.device_id
|
292 |
+
)
|
293 |
+
p.tensor_impl.scale = p.tensor_impl.scale.cuda(non_blocking=True, device=self.device_id)
|
294 |
+
else:
|
295 |
+
p.data = p.data.cuda(non_blocking=True, device=self.device_id)
|
296 |
+
|
297 |
+
if record_for_stream != None:
|
298 |
+
if isinstance(p, AffineQuantizedTensor):
|
299 |
+
p.tensor_impl.float8_data.record_stream(record_for_stream)
|
300 |
+
p.tensor_impl.scale.record_stream(record_for_stream)
|
301 |
+
else:
|
302 |
+
p.data.record_stream(record_for_stream)
|
303 |
+
|
304 |
+
entry_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
305 |
+
if self.verboseLevel >= 2:
|
306 |
+
model = self.models[model_name]
|
307 |
+
model_name = model._get_name()
|
308 |
+
print(f"Loading model {entry_name} ({model_name}) in GPU")
|
309 |
+
|
310 |
+
if self.async_transfers and blocks_name != None:
|
311 |
+
first = self.prev_blocks_names[entry_name] == None
|
312 |
+
next_blocks_entry = self.next_blocks_names[entry_name] if entry_name in self.next_blocks_names else None
|
313 |
+
if first:
|
314 |
+
cpu_to_gpu(torch.cuda.current_stream(), self.blocks_of_modules[entry_name])
|
315 |
+
torch.cuda.synchronize()
|
316 |
+
|
317 |
+
if next_blocks_entry != None:
|
318 |
+
cpu_to_gpu(self.transfer_stream, self.blocks_of_modules[next_blocks_entry])
|
319 |
+
|
320 |
+
else:
|
321 |
+
cpu_to_gpu(self.default_stream, self.blocks_of_modules[entry_name])
|
322 |
+
torch.cuda.synchronize()
|
323 |
+
|
324 |
+
@torch.compiler.disable()
|
325 |
+
def gpu_unload_blocks(self, model_name, blocks_name):
|
326 |
+
if blocks_name != None:
|
327 |
+
self.loaded_blocks[model_name] = None
|
328 |
+
|
329 |
+
blocks_name = model_name if blocks_name is None else model_name + "/" + blocks_name
|
330 |
+
|
331 |
+
if self.verboseLevel >= 2:
|
332 |
+
model = self.models[model_name]
|
333 |
+
model_name = model._get_name()
|
334 |
+
print(f"Unloading model {blocks_name} ({model_name}) from GPU")
|
335 |
+
|
336 |
+
blocks_params = self.blocks_of_modules[blocks_name]
|
337 |
+
|
338 |
+
if model_name in self.pinned_modules_data:
|
339 |
+
pinned_parameters_data = self.pinned_modules_data[model_name]
|
340 |
+
for p in blocks_params:
|
341 |
+
if isinstance(p, AffineQuantizedTensor):
|
342 |
+
data = pinned_parameters_data[p]
|
343 |
+
p.tensor_impl.float8_data = data[0]
|
344 |
+
p.tensor_impl.scale = data[1]
|
345 |
+
else:
|
346 |
+
p.data = pinned_parameters_data[p]
|
347 |
+
else:
|
348 |
+
for p in blocks_params:
|
349 |
+
if isinstance(p, AffineQuantizedTensor):
|
350 |
+
p.tensor_impl.float8_data = p.tensor_impl.float8_data.cpu()
|
351 |
+
p.tensor_impl.scale = p.tensor_impl.scale.cpu()
|
352 |
+
else:
|
353 |
+
p.data = p.data.cpu()
|
354 |
+
|
355 |
+
@torch.compiler.disable()
|
356 |
+
def gpu_load(self, model_name):
|
357 |
+
model = self.models[model_name]
|
358 |
+
self.active_models.append(model)
|
359 |
+
self.active_models_ids.append(model_name)
|
360 |
+
|
361 |
+
self.gpu_load_blocks(model_name, None)
|
362 |
+
|
363 |
+
# torch.cuda.current_stream().synchronize()
|
364 |
+
|
365 |
+
@torch.compiler.disable()
|
366 |
+
def unload_all(self, model_name: str):
|
367 |
+
if len(self.active_models_ids) == 0 and self.last_run_model == model_name:
|
368 |
+
self.last_run_model = model_name
|
369 |
+
return
|
370 |
+
for model_name in self.active_models_ids:
|
371 |
+
self.gpu_unload_blocks(model_name, None)
|
372 |
+
loaded_block = self.loaded_blocks[model_name]
|
373 |
+
if loaded_block != None:
|
374 |
+
self.gpu_unload_blocks(model_name, loaded_block)
|
375 |
+
self.loaded_blocks[model_name] = None
|
376 |
+
|
377 |
+
self.active_models = []
|
378 |
+
self.active_models_ids = []
|
379 |
+
self.active_subcaches = []
|
380 |
+
torch.cuda.empty_cache()
|
381 |
+
gc.collect()
|
382 |
+
self.last_reserved_mem_check = time.time()
|
383 |
+
self.last_run_model = model_name
|
384 |
+
|
385 |
+
def move_args_to_gpu(self, *args, **kwargs):
|
386 |
+
new_args = []
|
387 |
+
new_kwargs = {}
|
388 |
+
for arg in args:
|
389 |
+
if torch.is_tensor(arg):
|
390 |
+
if arg.dtype == torch.float32:
|
391 |
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
|
392 |
+
else:
|
393 |
+
arg = arg.cuda(non_blocking=True, device=self.device_id)
|
394 |
+
new_args.append(arg)
|
395 |
+
|
396 |
+
for k in kwargs:
|
397 |
+
arg = kwargs[k]
|
398 |
+
if torch.is_tensor(arg):
|
399 |
+
if arg.dtype == torch.float32:
|
400 |
+
arg = arg.to(torch.bfloat16).cuda(non_blocking=True, device=self.device_id)
|
401 |
+
else:
|
402 |
+
arg = arg.cuda(non_blocking=True, device=self.device_id)
|
403 |
+
new_kwargs[k] = arg
|
404 |
+
|
405 |
+
return new_args, new_kwargs
|
406 |
+
|
407 |
+
def ready_to_check_mem(self):
|
408 |
+
if self.compile:
|
409 |
+
return
|
410 |
+
cur_clock = time.time()
|
411 |
+
# can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
|
412 |
+
if (cur_clock - self.last_reserved_mem_check) < 0.200:
|
413 |
+
return False
|
414 |
+
self.last_reserved_mem_check = cur_clock
|
415 |
+
return True
|
416 |
+
|
417 |
+
def empty_cache_if_needed(self):
|
418 |
+
mem_reserved = torch.cuda.memory_reserved()
|
419 |
+
mem_threshold = 0.9 * self.device_mem_capacity
|
420 |
+
if mem_reserved >= mem_threshold:
|
421 |
+
mem_allocated = torch.cuda.memory_allocated()
|
422 |
+
if mem_allocated <= 0.70 * mem_reserved:
|
423 |
+
torch.cuda.empty_cache()
|
424 |
+
tm = time.time()
|
425 |
+
if self.verboseLevel >= 2:
|
426 |
+
print(f"Empty Cuda cache at {tm}")
|
427 |
+
|
428 |
+
def any_param_or_buffer(self, target_module: torch.nn.Module):
|
429 |
+
|
430 |
+
for _ in target_module.parameters(recurse=False):
|
431 |
+
return True
|
432 |
+
|
433 |
+
for _ in target_module.buffers(recurse=False):
|
434 |
+
return True
|
435 |
+
|
436 |
+
return False
|
437 |
+
|
438 |
+
def hook_me_light(self, target_module, model_name, blocks_name, previous_method, context):
|
439 |
+
|
440 |
+
anyParam = self.any_param_or_buffer(target_module)
|
441 |
+
|
442 |
+
def check_empty_cuda_cache(module, *args, **kwargs):
|
443 |
+
if self.ready_to_check_mem():
|
444 |
+
self.empty_cache_if_needed()
|
445 |
+
return previous_method(*args, **kwargs)
|
446 |
+
|
447 |
+
def load_module_blocks(module, *args, **kwargs):
|
448 |
+
if blocks_name == None:
|
449 |
+
if self.ready_to_check_mem():
|
450 |
+
self.empty_cache_if_needed()
|
451 |
+
else:
|
452 |
+
loaded_block = self.loaded_blocks[model_name]
|
453 |
+
if loaded_block == None or loaded_block != blocks_name:
|
454 |
+
if loaded_block != None:
|
455 |
+
self.gpu_unload_blocks(model_name, loaded_block)
|
456 |
+
if self.ready_to_check_mem():
|
457 |
+
self.empty_cache_if_needed()
|
458 |
+
self.loaded_blocks[model_name] = blocks_name
|
459 |
+
self.gpu_load_blocks(model_name, blocks_name)
|
460 |
+
return previous_method(*args, **kwargs)
|
461 |
+
|
462 |
+
if hasattr(target_module, "_mm_id"):
|
463 |
+
orig_model_name = getattr(target_module, "_mm_id")
|
464 |
+
if self.verboseLevel >= 2:
|
465 |
+
print(
|
466 |
+
f"Model '{model_name}' shares module '{target_module._get_name()}' with module '{orig_model_name}' "
|
467 |
+
)
|
468 |
+
assert not anyParam
|
469 |
+
return
|
470 |
+
setattr(target_module, "_mm_id", model_name)
|
471 |
+
|
472 |
+
if blocks_name != None and anyParam:
|
473 |
+
setattr(
|
474 |
+
target_module,
|
475 |
+
"forward",
|
476 |
+
functools.update_wrapper(functools.partial(load_module_blocks, target_module), previous_method),
|
477 |
+
)
|
478 |
+
# print(f"new cache:{blocks_name}")
|
479 |
+
else:
|
480 |
+
setattr(
|
481 |
+
target_module,
|
482 |
+
"forward",
|
483 |
+
functools.update_wrapper(functools.partial(check_empty_cuda_cache, target_module), previous_method),
|
484 |
+
)
|
485 |
+
|
486 |
+
def hook_me(self, target_module, model, model_name, module_id, previous_method):
|
487 |
+
def check_change_module(module, *args, **kwargs):
|
488 |
+
performEmptyCacheTest = False
|
489 |
+
if not model_name in self.active_models_ids:
|
490 |
+
new_model_name = getattr(module, "_mm_id")
|
491 |
+
if not self.can_model_be_cotenant(new_model_name):
|
492 |
+
self.unload_all(model_name)
|
493 |
+
performEmptyCacheTest = False
|
494 |
+
self.gpu_load(new_model_name)
|
495 |
+
args, kwargs = self.move_args_to_gpu(*args, **kwargs)
|
496 |
+
if performEmptyCacheTest:
|
497 |
+
self.empty_cache_if_needed()
|
498 |
+
return previous_method(*args, **kwargs)
|
499 |
+
|
500 |
+
if hasattr(target_module, "_mm_id"):
|
501 |
+
return
|
502 |
+
setattr(target_module, "_mm_id", model_name)
|
503 |
+
|
504 |
+
setattr(
|
505 |
+
target_module,
|
506 |
+
"forward",
|
507 |
+
functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method),
|
508 |
+
)
|
509 |
+
|
510 |
+
if not self.verboseLevel >= 1:
|
511 |
+
return
|
512 |
+
|
513 |
+
if module_id == None or module_id == "":
|
514 |
+
model_name = model._get_name()
|
515 |
+
print(f"Hooked in model '{model_name}' ({model_name})")
|
skyreelsinfer/pipelines/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .pipeline_skyreels_video import SkyreelsVideoPipeline
|
skyreelsinfer/pipelines/pipeline_skyreels_video.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
from typing import Callable
|
3 |
+
from typing import Dict
|
4 |
+
from typing import List
|
5 |
+
from typing import Optional
|
6 |
+
from typing import Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from diffusers import HunyuanVideoPipeline
|
11 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
12 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import HunyuanVideoPipelineOutput
|
13 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import MultiPipelineCallbacks
|
14 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import PipelineCallback
|
15 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
|
19 |
+
def resizecrop(image, th, tw):
|
20 |
+
w, h = image.size
|
21 |
+
if h / w > th / tw:
|
22 |
+
new_w = int(w)
|
23 |
+
new_h = int(new_w * th / tw)
|
24 |
+
else:
|
25 |
+
new_h = int(h)
|
26 |
+
new_w = int(new_h * tw / th)
|
27 |
+
left = (w - new_w) / 2
|
28 |
+
top = (h - new_h) / 2
|
29 |
+
right = (w + new_w) / 2
|
30 |
+
bottom = (h + new_h) / 2
|
31 |
+
image = image.crop((left, top, right, bottom))
|
32 |
+
return image
|
33 |
+
|
34 |
+
|
35 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
36 |
+
"""
|
37 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
38 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
39 |
+
"""
|
40 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
41 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
42 |
+
# rescale the results from guidance (fixes overexposure)
|
43 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
44 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
45 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
46 |
+
return noise_cfg
|
47 |
+
|
48 |
+
|
49 |
+
class SkyreelsVideoPipeline(HunyuanVideoPipeline):
|
50 |
+
"""
|
51 |
+
support i2v and t2v
|
52 |
+
support true_cfg
|
53 |
+
"""
|
54 |
+
|
55 |
+
@property
|
56 |
+
def guidance_rescale(self):
|
57 |
+
return self._guidance_rescale
|
58 |
+
|
59 |
+
@property
|
60 |
+
def clip_skip(self):
|
61 |
+
return self._clip_skip
|
62 |
+
|
63 |
+
@property
|
64 |
+
def do_classifier_free_guidance(self):
|
65 |
+
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None
|
66 |
+
return self._guidance_scale > 1
|
67 |
+
|
68 |
+
def encode_prompt(
|
69 |
+
self,
|
70 |
+
prompt: Union[str, List[str]],
|
71 |
+
do_classifier_free_guidance: bool,
|
72 |
+
negative_prompt: str = "",
|
73 |
+
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
|
74 |
+
num_videos_per_prompt: int = 1,
|
75 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
76 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
77 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
78 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
79 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
80 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
81 |
+
device: Optional[torch.device] = None,
|
82 |
+
dtype: Optional[torch.dtype] = None,
|
83 |
+
max_sequence_length: int = 256,
|
84 |
+
):
|
85 |
+
num_hidden_layers_to_skip = self.clip_skip if self.clip_skip is not None else 0
|
86 |
+
print(f"num_hidden_layers_to_skip: {num_hidden_layers_to_skip}")
|
87 |
+
if prompt_embeds is None:
|
88 |
+
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
|
89 |
+
prompt,
|
90 |
+
prompt_template,
|
91 |
+
num_videos_per_prompt,
|
92 |
+
device=device,
|
93 |
+
dtype=dtype,
|
94 |
+
num_hidden_layers_to_skip=num_hidden_layers_to_skip,
|
95 |
+
max_sequence_length=max_sequence_length,
|
96 |
+
)
|
97 |
+
if negative_prompt_embeds is None and do_classifier_free_guidance:
|
98 |
+
negative_prompt_embeds, negative_attention_mask = self._get_llama_prompt_embeds(
|
99 |
+
negative_prompt,
|
100 |
+
prompt_template,
|
101 |
+
num_videos_per_prompt,
|
102 |
+
device=device,
|
103 |
+
dtype=dtype,
|
104 |
+
num_hidden_layers_to_skip=num_hidden_layers_to_skip,
|
105 |
+
max_sequence_length=max_sequence_length,
|
106 |
+
)
|
107 |
+
if self.text_encoder_2 is not None and pooled_prompt_embeds is None:
|
108 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
109 |
+
prompt,
|
110 |
+
num_videos_per_prompt,
|
111 |
+
device=device,
|
112 |
+
dtype=dtype,
|
113 |
+
max_sequence_length=77,
|
114 |
+
)
|
115 |
+
if negative_pooled_prompt_embeds is None and do_classifier_free_guidance:
|
116 |
+
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
117 |
+
negative_prompt,
|
118 |
+
num_videos_per_prompt,
|
119 |
+
device=device,
|
120 |
+
dtype=dtype,
|
121 |
+
max_sequence_length=77,
|
122 |
+
)
|
123 |
+
return (
|
124 |
+
prompt_embeds,
|
125 |
+
prompt_attention_mask,
|
126 |
+
negative_prompt_embeds,
|
127 |
+
negative_attention_mask,
|
128 |
+
pooled_prompt_embeds,
|
129 |
+
negative_pooled_prompt_embeds,
|
130 |
+
)
|
131 |
+
|
132 |
+
def image_latents(
|
133 |
+
self,
|
134 |
+
initial_image,
|
135 |
+
batch_size,
|
136 |
+
height,
|
137 |
+
width,
|
138 |
+
device,
|
139 |
+
dtype,
|
140 |
+
num_channels_latents,
|
141 |
+
video_length,
|
142 |
+
):
|
143 |
+
initial_image = initial_image.unsqueeze(2)
|
144 |
+
image_latents = self.vae.encode(initial_image).latent_dist.sample()
|
145 |
+
if hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor:
|
146 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
147 |
+
else:
|
148 |
+
image_latents = image_latents * self.vae.config.scaling_factor
|
149 |
+
padding_shape = (
|
150 |
+
batch_size,
|
151 |
+
num_channels_latents,
|
152 |
+
video_length - 1,
|
153 |
+
int(height) // self.vae_scale_factor_spatial,
|
154 |
+
int(width) // self.vae_scale_factor_spatial,
|
155 |
+
)
|
156 |
+
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype)
|
157 |
+
image_latents = torch.cat([image_latents, latent_padding], dim=2)
|
158 |
+
return image_latents
|
159 |
+
|
160 |
+
@torch.no_grad()
|
161 |
+
def __call__(
|
162 |
+
self,
|
163 |
+
prompt: str,
|
164 |
+
negative_prompt: str = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
165 |
+
height: int = 720,
|
166 |
+
width: int = 1280,
|
167 |
+
num_frames: int = 129,
|
168 |
+
num_inference_steps: int = 50,
|
169 |
+
sigmas: List[float] = None,
|
170 |
+
guidance_scale: float = 1.0,
|
171 |
+
num_videos_per_prompt: Optional[int] = 1,
|
172 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
173 |
+
latents: Optional[torch.Tensor] = None,
|
174 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
175 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
176 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
177 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
178 |
+
negative_attention_mask: Optional[torch.Tensor] = None,
|
179 |
+
output_type: Optional[str] = "pil",
|
180 |
+
return_dict: bool = True,
|
181 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
182 |
+
guidance_rescale: float = 0.0,
|
183 |
+
clip_skip: Optional[int] = 2,
|
184 |
+
callback_on_step_end: Optional[
|
185 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
186 |
+
] = None,
|
187 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
188 |
+
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
|
189 |
+
max_sequence_length: int = 256,
|
190 |
+
embedded_guidance_scale: Optional[float] = 6.0,
|
191 |
+
image: Optional[Union[torch.Tensor, Image.Image]] = None,
|
192 |
+
cfg_for: bool = False,
|
193 |
+
):
|
194 |
+
if hasattr(self, "text_encoder_to_gpu"):
|
195 |
+
self.text_encoder_to_gpu()
|
196 |
+
|
197 |
+
if image is not None and isinstance(image, Image.Image):
|
198 |
+
image = resizecrop(image, height, width)
|
199 |
+
|
200 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
201 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
202 |
+
|
203 |
+
# 1. Check inputs. Raise error if not correct
|
204 |
+
self.check_inputs(
|
205 |
+
prompt,
|
206 |
+
None,
|
207 |
+
height,
|
208 |
+
width,
|
209 |
+
prompt_embeds,
|
210 |
+
callback_on_step_end_tensor_inputs,
|
211 |
+
prompt_template,
|
212 |
+
)
|
213 |
+
# add negative prompt check
|
214 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
215 |
+
raise ValueError(
|
216 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
217 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
218 |
+
)
|
219 |
+
|
220 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
221 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
222 |
+
raise ValueError(
|
223 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
224 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
225 |
+
f" {negative_prompt_embeds.shape}."
|
226 |
+
)
|
227 |
+
|
228 |
+
self._guidance_scale = guidance_scale
|
229 |
+
self._guidance_rescale = guidance_rescale
|
230 |
+
self._clip_skip = clip_skip
|
231 |
+
self._attention_kwargs = attention_kwargs
|
232 |
+
self._interrupt = False
|
233 |
+
|
234 |
+
device = self._execution_device
|
235 |
+
|
236 |
+
# 2. Define call parameters
|
237 |
+
if prompt is not None and isinstance(prompt, str):
|
238 |
+
batch_size = 1
|
239 |
+
elif prompt is not None and isinstance(prompt, list):
|
240 |
+
batch_size = len(prompt)
|
241 |
+
else:
|
242 |
+
batch_size = prompt_embeds.shape[0]
|
243 |
+
|
244 |
+
# 3. Encode input prompt
|
245 |
+
(
|
246 |
+
prompt_embeds,
|
247 |
+
prompt_attention_mask,
|
248 |
+
negative_prompt_embeds,
|
249 |
+
negative_attention_mask,
|
250 |
+
pooled_prompt_embeds,
|
251 |
+
negative_pooled_prompt_embeds,
|
252 |
+
) = self.encode_prompt(
|
253 |
+
prompt=prompt,
|
254 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
255 |
+
negative_prompt=negative_prompt,
|
256 |
+
prompt_template=prompt_template,
|
257 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
258 |
+
prompt_embeds=prompt_embeds,
|
259 |
+
prompt_attention_mask=prompt_attention_mask,
|
260 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
261 |
+
negative_attention_mask=negative_attention_mask,
|
262 |
+
device=device,
|
263 |
+
max_sequence_length=max_sequence_length,
|
264 |
+
)
|
265 |
+
|
266 |
+
transformer_dtype = self.transformer.dtype
|
267 |
+
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
268 |
+
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
|
269 |
+
if pooled_prompt_embeds is not None:
|
270 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
|
271 |
+
|
272 |
+
## Embeddings are concatenated to form a batch.
|
273 |
+
if self.do_classifier_free_guidance:
|
274 |
+
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
275 |
+
negative_attention_mask = negative_attention_mask.to(transformer_dtype)
|
276 |
+
if negative_pooled_prompt_embeds is not None:
|
277 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
|
278 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
279 |
+
if prompt_attention_mask is not None:
|
280 |
+
prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask])
|
281 |
+
if pooled_prompt_embeds is not None:
|
282 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
283 |
+
|
284 |
+
# 4. Prepare timesteps
|
285 |
+
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
|
286 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
287 |
+
self.scheduler,
|
288 |
+
num_inference_steps,
|
289 |
+
device,
|
290 |
+
sigmas=sigmas,
|
291 |
+
)
|
292 |
+
|
293 |
+
# 5. Prepare latent variables
|
294 |
+
num_channels_latents = self.transformer.config.in_channels
|
295 |
+
if image is not None:
|
296 |
+
num_channels_latents = int(num_channels_latents / 2)
|
297 |
+
image = self.video_processor.preprocess(image, height=height, width=width).to(
|
298 |
+
device, dtype=prompt_embeds.dtype
|
299 |
+
)
|
300 |
+
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
301 |
+
latents = self.prepare_latents(
|
302 |
+
batch_size * num_videos_per_prompt,
|
303 |
+
num_channels_latents,
|
304 |
+
height,
|
305 |
+
width,
|
306 |
+
num_latent_frames,
|
307 |
+
torch.float32,
|
308 |
+
device,
|
309 |
+
generator,
|
310 |
+
latents,
|
311 |
+
)
|
312 |
+
# add image latents
|
313 |
+
if image is not None:
|
314 |
+
image_latents = self.image_latents(
|
315 |
+
image, batch_size, height, width, device, torch.float32, num_channels_latents, num_latent_frames
|
316 |
+
)
|
317 |
+
|
318 |
+
image_latents = image_latents.to(transformer_dtype)
|
319 |
+
else:
|
320 |
+
image_latents = None
|
321 |
+
|
322 |
+
# 6. Prepare guidance condition
|
323 |
+
if self.do_classifier_free_guidance:
|
324 |
+
guidance = (
|
325 |
+
torch.tensor([embedded_guidance_scale] * latents.shape[0] * 2, dtype=transformer_dtype, device=device)
|
326 |
+
* 1000.0
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
guidance = (
|
330 |
+
torch.tensor([embedded_guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device)
|
331 |
+
* 1000.0
|
332 |
+
)
|
333 |
+
|
334 |
+
# 7. Denoising loop
|
335 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
336 |
+
self._num_timesteps = len(timesteps)
|
337 |
+
|
338 |
+
if hasattr(self, "text_encoder_to_cpu"):
|
339 |
+
self.text_encoder_to_cpu()
|
340 |
+
|
341 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
342 |
+
for i, t in enumerate(timesteps):
|
343 |
+
if self.interrupt:
|
344 |
+
continue
|
345 |
+
|
346 |
+
latents = latents.to(transformer_dtype)
|
347 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
348 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
349 |
+
# timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
350 |
+
if image_latents is not None:
|
351 |
+
latent_image_input = (
|
352 |
+
torch.cat([image_latents] * 2) if self.do_classifier_free_guidance else image_latents
|
353 |
+
)
|
354 |
+
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=1)
|
355 |
+
timestep = t.repeat(latent_model_input.shape[0]).to(torch.float32)
|
356 |
+
if cfg_for and self.do_classifier_free_guidance:
|
357 |
+
noise_pred_list = []
|
358 |
+
for idx in range(latent_model_input.shape[0]):
|
359 |
+
noise_pred_uncond = self.transformer(
|
360 |
+
hidden_states=latent_model_input[idx].unsqueeze(0),
|
361 |
+
timestep=timestep[idx].unsqueeze(0),
|
362 |
+
encoder_hidden_states=prompt_embeds[idx].unsqueeze(0),
|
363 |
+
encoder_attention_mask=prompt_attention_mask[idx].unsqueeze(0),
|
364 |
+
pooled_projections=pooled_prompt_embeds[idx].unsqueeze(0),
|
365 |
+
guidance=guidance[idx].unsqueeze(0),
|
366 |
+
attention_kwargs=attention_kwargs,
|
367 |
+
return_dict=False,
|
368 |
+
)[0]
|
369 |
+
noise_pred_list.append(noise_pred_uncond)
|
370 |
+
noise_pred = torch.cat(noise_pred_list, dim=0)
|
371 |
+
else:
|
372 |
+
noise_pred = self.transformer(
|
373 |
+
hidden_states=latent_model_input,
|
374 |
+
timestep=timestep,
|
375 |
+
encoder_hidden_states=prompt_embeds,
|
376 |
+
encoder_attention_mask=prompt_attention_mask,
|
377 |
+
pooled_projections=pooled_prompt_embeds,
|
378 |
+
guidance=guidance,
|
379 |
+
attention_kwargs=attention_kwargs,
|
380 |
+
return_dict=False,
|
381 |
+
)[0]
|
382 |
+
|
383 |
+
# perform guidance
|
384 |
+
if self.do_classifier_free_guidance:
|
385 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
386 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
387 |
+
|
388 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
389 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
390 |
+
noise_pred = rescale_noise_cfg(
|
391 |
+
noise_pred,
|
392 |
+
noise_pred_text,
|
393 |
+
guidance_rescale=self.guidance_rescale,
|
394 |
+
)
|
395 |
+
|
396 |
+
# compute the previous noisy sample x_t -> x_t-1
|
397 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
398 |
+
|
399 |
+
if callback_on_step_end is not None:
|
400 |
+
callback_kwargs = {}
|
401 |
+
for k in callback_on_step_end_tensor_inputs:
|
402 |
+
callback_kwargs[k] = locals()[k]
|
403 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
404 |
+
|
405 |
+
latents = callback_outputs.pop("latents", latents)
|
406 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
407 |
+
|
408 |
+
# call the callback, if provided
|
409 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
410 |
+
progress_bar.update()
|
411 |
+
|
412 |
+
if not output_type == "latent":
|
413 |
+
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
|
414 |
+
video = self.vae.decode(latents, return_dict=False)[0]
|
415 |
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
416 |
+
else:
|
417 |
+
video = latents
|
418 |
+
|
419 |
+
# Offload all models
|
420 |
+
self.maybe_free_model_hooks()
|
421 |
+
|
422 |
+
if not return_dict:
|
423 |
+
return (video,)
|
424 |
+
|
425 |
+
return HunyuanVideoPipelineOutput(frames=video)
|
skyreelsinfer/skyreels_video_infer.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import threading
|
4 |
+
import time
|
5 |
+
from datetime import timedelta
|
6 |
+
from typing import Any
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
import torch.multiprocessing as mp
|
12 |
+
from diffusers import HunyuanVideoTransformer3DModel
|
13 |
+
from PIL import Image
|
14 |
+
from torchao.quantization import float8_weight_only
|
15 |
+
from torchao.quantization import quantize_
|
16 |
+
from transformers import LlamaModel
|
17 |
+
|
18 |
+
from . import TaskType
|
19 |
+
from .offload import Offload
|
20 |
+
from .offload import OffloadConfig
|
21 |
+
from .pipelines import SkyreelsVideoPipeline
|
22 |
+
|
23 |
+
logger = logging.getLogger("SkyreelsVideoInfer")
|
24 |
+
logger.setLevel(logging.DEBUG)
|
25 |
+
console_handler = logging.StreamHandler()
|
26 |
+
console_handler.setLevel(logging.DEBUG)
|
27 |
+
formatter = logging.Formatter(
|
28 |
+
f"%(asctime)s - %(name)s - %(levelname)s - [%(filename)s:%(lineno)d - %(funcName)s] - %(message)s"
|
29 |
+
)
|
30 |
+
console_handler.setFormatter(formatter)
|
31 |
+
logger.addHandler(console_handler)
|
32 |
+
|
33 |
+
|
34 |
+
class SkyReelsVideoSingleGpuInfer:
|
35 |
+
def _load_model(
|
36 |
+
self,
|
37 |
+
model_id: str,
|
38 |
+
base_model_id: str = "hunyuanvideo-community/HunyuanVideo",
|
39 |
+
quant_model: bool = True,
|
40 |
+
gpu_device: str = "cuda:0",
|
41 |
+
) -> SkyreelsVideoPipeline:
|
42 |
+
logger.info(f"load model model_id:{model_id} quan_model:{quant_model} gpu_device:{gpu_device}")
|
43 |
+
text_encoder = LlamaModel.from_pretrained(
|
44 |
+
base_model_id,
|
45 |
+
subfolder="text_encoder",
|
46 |
+
torch_dtype=torch.bfloat16,
|
47 |
+
).to("cpu")
|
48 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
49 |
+
model_id,
|
50 |
+
# subfolder="transformer",
|
51 |
+
torch_dtype=torch.bfloat16,
|
52 |
+
device="cpu",
|
53 |
+
).to("cpu")
|
54 |
+
if quant_model:
|
55 |
+
quantize_(text_encoder, float8_weight_only(), device=gpu_device)
|
56 |
+
text_encoder.to("cpu")
|
57 |
+
torch.cuda.empty_cache()
|
58 |
+
quantize_(transformer, float8_weight_only(), device=gpu_device)
|
59 |
+
transformer.to("cpu")
|
60 |
+
torch.cuda.empty_cache()
|
61 |
+
pipe = SkyreelsVideoPipeline.from_pretrained(
|
62 |
+
base_model_id,
|
63 |
+
transformer=transformer,
|
64 |
+
text_encoder=text_encoder,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
).to("cpu")
|
67 |
+
pipe.vae.enable_tiling()
|
68 |
+
torch.cuda.empty_cache()
|
69 |
+
return pipe
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
task_type: TaskType,
|
74 |
+
model_id: str,
|
75 |
+
quant_model: bool = True,
|
76 |
+
local_rank: int = 0,
|
77 |
+
world_size: int = 1,
|
78 |
+
is_offload: bool = True,
|
79 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
80 |
+
enable_cfg_parallel: bool = True,
|
81 |
+
):
|
82 |
+
self.task_type = task_type
|
83 |
+
self.gpu_rank = local_rank
|
84 |
+
dist.init_process_group(
|
85 |
+
backend="nccl",
|
86 |
+
init_method="tcp://127.0.0.1:23456",
|
87 |
+
timeout=timedelta(seconds=600),
|
88 |
+
world_size=world_size,
|
89 |
+
rank=local_rank,
|
90 |
+
)
|
91 |
+
os.environ["LOCAL_RANK"] = str(local_rank)
|
92 |
+
logger.info(f"rank:{local_rank} Distributed backend: {dist.get_backend()}")
|
93 |
+
torch.cuda.set_device(dist.get_rank())
|
94 |
+
torch.backends.cuda.enable_cudnn_sdp(False)
|
95 |
+
gpu_device = f"cuda:{dist.get_rank()}"
|
96 |
+
|
97 |
+
self.pipe: SkyreelsVideoPipeline = self._load_model(
|
98 |
+
model_id=model_id, quant_model=quant_model, gpu_device=gpu_device
|
99 |
+
)
|
100 |
+
|
101 |
+
from para_attn.context_parallel import init_context_parallel_mesh
|
102 |
+
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
|
103 |
+
from para_attn.parallel_vae.diffusers_adapters import parallelize_vae
|
104 |
+
|
105 |
+
max_batch_dim_size = 2 if enable_cfg_parallel and world_size > 1 else 1
|
106 |
+
max_ulysses_dim_size = int(world_size / max_batch_dim_size)
|
107 |
+
logger.info(f"max_batch_dim_size: {max_batch_dim_size}, max_ulysses_dim_size:{max_ulysses_dim_size}")
|
108 |
+
|
109 |
+
mesh = init_context_parallel_mesh(
|
110 |
+
self.pipe.device.type,
|
111 |
+
max_ring_dim_size=1,
|
112 |
+
max_batch_dim_size=max_batch_dim_size,
|
113 |
+
)
|
114 |
+
parallelize_pipe(self.pipe, mesh=mesh)
|
115 |
+
parallelize_vae(self.pipe.vae, mesh=mesh._flatten())
|
116 |
+
|
117 |
+
if is_offload:
|
118 |
+
Offload.offload(
|
119 |
+
pipeline=self.pipe,
|
120 |
+
config=offload_config,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
self.pipe.to(gpu_device)
|
124 |
+
|
125 |
+
if offload_config.compiler_transformer:
|
126 |
+
torch._dynamo.config.suppress_errors = True
|
127 |
+
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
|
128 |
+
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{offload_config.compiler_cache}_{world_size}"
|
129 |
+
self.pipe.transformer = torch.compile(
|
130 |
+
self.pipe.transformer,
|
131 |
+
mode="max-autotune-no-cudagraphs",
|
132 |
+
dynamic=True,
|
133 |
+
)
|
134 |
+
self.warm_up()
|
135 |
+
|
136 |
+
def warm_up(self):
|
137 |
+
init_kwargs = {
|
138 |
+
"prompt": "A woman is dancing in a room",
|
139 |
+
"height": 544,
|
140 |
+
"width": 960,
|
141 |
+
"guidance_scale": 6,
|
142 |
+
"num_inference_steps": 1,
|
143 |
+
"negative_prompt": "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion",
|
144 |
+
"num_frames": 97,
|
145 |
+
"generator": torch.Generator("cuda").manual_seed(42),
|
146 |
+
"embedded_guidance_scale": 1.0,
|
147 |
+
}
|
148 |
+
if self.task_type == TaskType.I2V:
|
149 |
+
init_kwargs["image"] = Image.new("RGB", (544, 960), color="black")
|
150 |
+
self.pipe(**init_kwargs)
|
151 |
+
|
152 |
+
def damon_inference(self, request_queue: mp.Queue, response_queue: mp.Queue):
|
153 |
+
response_queue.put(f"rank:{self.gpu_rank} ready")
|
154 |
+
logger.info(f"rank:{self.gpu_rank} finish init pipe")
|
155 |
+
while True:
|
156 |
+
logger.info(f"rank:{self.gpu_rank} waiting for request")
|
157 |
+
kwargs = request_queue.get()
|
158 |
+
logger.info(f"rank:{self.gpu_rank} kwargs: {kwargs}")
|
159 |
+
if "seed" in kwargs:
|
160 |
+
kwargs["generator"] = torch.Generator("cuda").manual_seed(kwargs["seed"])
|
161 |
+
del kwargs["seed"]
|
162 |
+
start_time = time.time()
|
163 |
+
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
|
164 |
+
out = self.pipe(**kwargs).frames[0]
|
165 |
+
logger.info(f"rank:{dist.get_rank()} inference time: {time.time() - start_time}")
|
166 |
+
if dist.get_rank() == 0:
|
167 |
+
response_queue.put(out)
|
168 |
+
|
169 |
+
|
170 |
+
def single_gpu_run(
|
171 |
+
rank,
|
172 |
+
task_type: TaskType,
|
173 |
+
model_id: str,
|
174 |
+
request_queue: mp.Queue,
|
175 |
+
response_queue: mp.Queue,
|
176 |
+
quant_model: bool = True,
|
177 |
+
world_size: int = 1,
|
178 |
+
is_offload: bool = True,
|
179 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
180 |
+
enable_cfg_parallel: bool = True,
|
181 |
+
):
|
182 |
+
pipe = SkyReelsVideoSingleGpuInfer(
|
183 |
+
task_type=task_type,
|
184 |
+
model_id=model_id,
|
185 |
+
quant_model=quant_model,
|
186 |
+
local_rank=rank,
|
187 |
+
world_size=world_size,
|
188 |
+
is_offload=is_offload,
|
189 |
+
offload_config=offload_config,
|
190 |
+
enable_cfg_parallel=enable_cfg_parallel,
|
191 |
+
)
|
192 |
+
pipe.damon_inference(request_queue, response_queue)
|
193 |
+
|
194 |
+
|
195 |
+
class SkyReelsVideoInfer:
|
196 |
+
def __init__(
|
197 |
+
self,
|
198 |
+
task_type: TaskType,
|
199 |
+
model_id: str,
|
200 |
+
quant_model: bool = True,
|
201 |
+
world_size: int = 1,
|
202 |
+
is_offload: bool = True,
|
203 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
204 |
+
enable_cfg_parallel: bool = True,
|
205 |
+
):
|
206 |
+
self.world_size = world_size
|
207 |
+
smp = mp.get_context("spawn")
|
208 |
+
self.REQ_QUEUES: mp.Queue = smp.Queue()
|
209 |
+
self.RESP_QUEUE: mp.Queue = smp.Queue()
|
210 |
+
assert self.world_size > 0, "gpu_num must be greater than 0"
|
211 |
+
spawn_thread = threading.Thread(
|
212 |
+
target=self.lauch_single_gpu_infer,
|
213 |
+
args=(task_type, model_id, quant_model, world_size, is_offload, offload_config, enable_cfg_parallel),
|
214 |
+
daemon=True,
|
215 |
+
)
|
216 |
+
spawn_thread.start()
|
217 |
+
logger.info(f"Started multi-GPU thread with GPU_NUM: {world_size}")
|
218 |
+
print(f"Started multi-GPU thread with GPU_NUM: {world_size}")
|
219 |
+
# Block and wait for the prediction process to start
|
220 |
+
for _ in range(world_size):
|
221 |
+
msg = self.RESP_QUEUE.get()
|
222 |
+
logger.info(f"launch_multi_gpu get init msg: {msg}")
|
223 |
+
print(f"launch_multi_gpu get init msg: {msg}")
|
224 |
+
|
225 |
+
def lauch_single_gpu_infer(
|
226 |
+
self,
|
227 |
+
task_type: TaskType,
|
228 |
+
model_id: str,
|
229 |
+
quant_model: bool = True,
|
230 |
+
world_size: int = 1,
|
231 |
+
is_offload: bool = True,
|
232 |
+
offload_config: OffloadConfig = OffloadConfig(),
|
233 |
+
enable_cfg_parallel: bool = True,
|
234 |
+
):
|
235 |
+
mp.spawn(
|
236 |
+
single_gpu_run,
|
237 |
+
nprocs=world_size,
|
238 |
+
join=True,
|
239 |
+
daemon=True,
|
240 |
+
args=(
|
241 |
+
task_type,
|
242 |
+
model_id,
|
243 |
+
self.REQ_QUEUES,
|
244 |
+
self.RESP_QUEUE,
|
245 |
+
quant_model,
|
246 |
+
world_size,
|
247 |
+
is_offload,
|
248 |
+
offload_config,
|
249 |
+
enable_cfg_parallel,
|
250 |
+
),
|
251 |
+
)
|
252 |
+
logger.info(f"finish lanch multi gpu infer, world_size:{world_size}")
|
253 |
+
|
254 |
+
def inference(self, kwargs: Dict[str, Any]):
|
255 |
+
# put request to singlegpuinfer
|
256 |
+
for _ in range(self.world_size):
|
257 |
+
self.REQ_QUEUES.put(kwargs)
|
258 |
+
return self.RESP_QUEUE.get()
|