Upload 6 files
Browse files- enhance_a_video/__init__.py +23 -0
- enhance_a_video/enhance.py +30 -0
- enhance_a_video/globals.py +30 -0
- enhance_a_video/models/__init__.py +0 -0
- enhance_a_video/models/cogvideox.py +148 -0
- enhance_a_video/models/hunyuanvideo.py +167 -0
enhance_a_video/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .enhance import enhance_score
|
2 |
+
from .globals import (
|
3 |
+
enable_enhance,
|
4 |
+
get_enhance_weight,
|
5 |
+
get_num_frames,
|
6 |
+
is_enhance_enabled,
|
7 |
+
set_enhance_weight,
|
8 |
+
set_num_frames,
|
9 |
+
)
|
10 |
+
from .models.cogvideox import inject_enhance_for_cogvideox
|
11 |
+
from .models.hunyuanvideo import inject_enhance_for_hunyuanvideo
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"inject_enhance_for_cogvideox",
|
15 |
+
"inject_enhance_for_hunyuanvideo",
|
16 |
+
"enhance_score",
|
17 |
+
"get_num_frames",
|
18 |
+
"set_num_frames",
|
19 |
+
"get_enhance_weight",
|
20 |
+
"set_enhance_weight",
|
21 |
+
"enable_enhance",
|
22 |
+
"is_enhance_enabled",
|
23 |
+
]
|
enhance_a_video/enhance.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from enhance_a_video.globals import get_enhance_weight
|
4 |
+
|
5 |
+
|
6 |
+
def enhance_score(query_image, key_image, head_dim, num_frames):
|
7 |
+
scale = head_dim**-0.5
|
8 |
+
query_image = query_image * scale
|
9 |
+
attn_temp = query_image @ key_image.transpose(-2, -1) # translate attn to float32
|
10 |
+
attn_temp = attn_temp.to(torch.float32)
|
11 |
+
attn_temp = attn_temp.softmax(dim=-1)
|
12 |
+
|
13 |
+
# Reshape to [batch_size * num_tokens, num_frames, num_frames]
|
14 |
+
attn_temp = attn_temp.reshape(-1, num_frames, num_frames)
|
15 |
+
|
16 |
+
# Create a mask for diagonal elements
|
17 |
+
diag_mask = torch.eye(num_frames, device=attn_temp.device).bool()
|
18 |
+
diag_mask = diag_mask.unsqueeze(0).expand(attn_temp.shape[0], -1, -1)
|
19 |
+
|
20 |
+
# Zero out diagonal elements
|
21 |
+
attn_wo_diag = attn_temp.masked_fill(diag_mask, 0)
|
22 |
+
|
23 |
+
# Calculate mean for each token's attention matrix
|
24 |
+
# Number of off-diagonal elements per matrix is n*n - n
|
25 |
+
num_off_diag = num_frames * num_frames - num_frames
|
26 |
+
mean_scores = attn_wo_diag.sum(dim=(1, 2)) / num_off_diag
|
27 |
+
|
28 |
+
enhance_scores = mean_scores.mean() * (num_frames + get_enhance_weight())
|
29 |
+
enhance_scores = enhance_scores.clamp(min=1)
|
30 |
+
return enhance_scores
|
enhance_a_video/globals.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NUM_FRAMES = None
|
2 |
+
ENHANCE_WEIGHT = None
|
3 |
+
ENABLE_ENHANCE = False
|
4 |
+
|
5 |
+
|
6 |
+
def set_num_frames(num_frames: int):
|
7 |
+
global NUM_FRAMES
|
8 |
+
NUM_FRAMES = num_frames
|
9 |
+
|
10 |
+
|
11 |
+
def get_num_frames() -> int:
|
12 |
+
return NUM_FRAMES
|
13 |
+
|
14 |
+
|
15 |
+
def enable_enhance():
|
16 |
+
global ENABLE_ENHANCE
|
17 |
+
ENABLE_ENHANCE = True
|
18 |
+
|
19 |
+
|
20 |
+
def is_enhance_enabled() -> bool:
|
21 |
+
return ENABLE_ENHANCE
|
22 |
+
|
23 |
+
|
24 |
+
def set_enhance_weight(enhance_weight: float):
|
25 |
+
global ENHANCE_WEIGHT
|
26 |
+
ENHANCE_WEIGHT = enhance_weight
|
27 |
+
|
28 |
+
|
29 |
+
def get_enhance_weight() -> float:
|
30 |
+
return ENHANCE_WEIGHT
|
enhance_a_video/models/__init__.py
ADDED
File without changes
|
enhance_a_video/models/cogvideox.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from diffusers.models.attention import Attention
|
6 |
+
from einops import rearrange
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from enhance_a_video.enhance import enhance_score
|
10 |
+
from enhance_a_video.globals import get_num_frames, is_enhance_enabled, set_num_frames
|
11 |
+
|
12 |
+
|
13 |
+
def inject_enhance_for_cogvideox(model: nn.Module) -> None:
|
14 |
+
"""
|
15 |
+
Inject enhance score for CogVideoX model.
|
16 |
+
1. register hook to update num frames
|
17 |
+
2. replace attention processor with enhance processor to weight the attention scores
|
18 |
+
"""
|
19 |
+
# register hook to update num frames
|
20 |
+
model.register_forward_pre_hook(num_frames_hook, with_kwargs=True)
|
21 |
+
# replace attention with enhanceAvideo
|
22 |
+
for name, module in model.named_modules():
|
23 |
+
if "attn" in name and isinstance(module, Attention):
|
24 |
+
module.set_processor(EnhanceCogVideoXAttnProcessor2_0())
|
25 |
+
|
26 |
+
|
27 |
+
def num_frames_hook(_, args, kwargs):
|
28 |
+
"""
|
29 |
+
Hook to update the number of frames automatically.
|
30 |
+
"""
|
31 |
+
if "hidden_states" in kwargs:
|
32 |
+
hidden_states = kwargs["hidden_states"]
|
33 |
+
else:
|
34 |
+
hidden_states = args[0]
|
35 |
+
num_frames = hidden_states.shape[1]
|
36 |
+
set_num_frames(num_frames)
|
37 |
+
return args, kwargs
|
38 |
+
|
39 |
+
|
40 |
+
class EnhanceCogVideoXAttnProcessor2_0:
|
41 |
+
r"""
|
42 |
+
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
|
43 |
+
query and key vectors, but does not include spatial normalization.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self):
|
47 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
48 |
+
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
49 |
+
|
50 |
+
def _get_enhance_scores(
|
51 |
+
self,
|
52 |
+
attn: Attention,
|
53 |
+
query: torch.Tensor,
|
54 |
+
key: torch.Tensor,
|
55 |
+
head_dim: int,
|
56 |
+
text_seq_length: int,
|
57 |
+
) -> torch.Tensor:
|
58 |
+
num_frames = get_num_frames()
|
59 |
+
spatial_dim = int((query.shape[2] - text_seq_length) / num_frames)
|
60 |
+
|
61 |
+
query_image = rearrange(
|
62 |
+
query[:, :, text_seq_length:],
|
63 |
+
"B N (T S) C -> (B S) N T C",
|
64 |
+
N=attn.heads,
|
65 |
+
T=num_frames,
|
66 |
+
S=spatial_dim,
|
67 |
+
C=head_dim,
|
68 |
+
)
|
69 |
+
key_image = rearrange(
|
70 |
+
key[:, :, text_seq_length:],
|
71 |
+
"B N (T S) C -> (B S) N T C",
|
72 |
+
N=attn.heads,
|
73 |
+
T=num_frames,
|
74 |
+
S=spatial_dim,
|
75 |
+
C=head_dim,
|
76 |
+
)
|
77 |
+
return enhance_score(query_image, key_image, head_dim, num_frames)
|
78 |
+
|
79 |
+
def __call__(
|
80 |
+
self,
|
81 |
+
attn: Attention,
|
82 |
+
hidden_states: torch.Tensor,
|
83 |
+
encoder_hidden_states: torch.Tensor,
|
84 |
+
attention_mask: Optional[torch.Tensor] = None,
|
85 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
86 |
+
) -> torch.Tensor:
|
87 |
+
text_seq_length = encoder_hidden_states.size(1)
|
88 |
+
|
89 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
90 |
+
|
91 |
+
batch_size, sequence_length, _ = (
|
92 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
93 |
+
)
|
94 |
+
|
95 |
+
if attention_mask is not None:
|
96 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
97 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
98 |
+
|
99 |
+
query = attn.to_q(hidden_states)
|
100 |
+
key = attn.to_k(hidden_states)
|
101 |
+
value = attn.to_v(hidden_states)
|
102 |
+
|
103 |
+
inner_dim = key.shape[-1]
|
104 |
+
head_dim = inner_dim // attn.heads
|
105 |
+
|
106 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
107 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
108 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
109 |
+
|
110 |
+
if attn.norm_q is not None:
|
111 |
+
query = attn.norm_q(query)
|
112 |
+
if attn.norm_k is not None:
|
113 |
+
key = attn.norm_k(key)
|
114 |
+
|
115 |
+
# Apply RoPE if needed
|
116 |
+
if image_rotary_emb is not None:
|
117 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
118 |
+
|
119 |
+
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
|
120 |
+
if not attn.is_cross_attention:
|
121 |
+
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
|
122 |
+
|
123 |
+
# ========== Enhance-A-Video ==========
|
124 |
+
if is_enhance_enabled():
|
125 |
+
enhance_scores = self._get_enhance_scores(attn, query, key, head_dim, text_seq_length)
|
126 |
+
# ========== Enhance-A-Video ==========
|
127 |
+
|
128 |
+
hidden_states = F.scaled_dot_product_attention(
|
129 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
130 |
+
)
|
131 |
+
|
132 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
133 |
+
|
134 |
+
# linear proj
|
135 |
+
hidden_states = attn.to_out[0](hidden_states)
|
136 |
+
# dropout
|
137 |
+
hidden_states = attn.to_out[1](hidden_states)
|
138 |
+
|
139 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
140 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
141 |
+
)
|
142 |
+
|
143 |
+
# ========== Enhance-A-Video ==========
|
144 |
+
if is_enhance_enabled():
|
145 |
+
hidden_states = hidden_states * enhance_scores
|
146 |
+
# ========== Enhance-A-Video ==========
|
147 |
+
|
148 |
+
return hidden_states, encoder_hidden_states
|
enhance_a_video/models/hunyuanvideo.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from diffusers.models.attention import Attention
|
7 |
+
from einops import rearrange
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from enhance_a_video.enhance import enhance_score
|
11 |
+
from enhance_a_video.globals import get_num_frames, is_enhance_enabled, set_num_frames
|
12 |
+
|
13 |
+
|
14 |
+
def inject_enhance_for_hunyuanvideo(model: nn.Module) -> None:
|
15 |
+
"""
|
16 |
+
Inject enhance score for HunyuanVideo model.
|
17 |
+
1. register hook to update num frames
|
18 |
+
2. replace attention processor with enhance processor to weight the attention scores
|
19 |
+
"""
|
20 |
+
# register hook to update num frames
|
21 |
+
model.register_forward_pre_hook(num_frames_hook, with_kwargs=True)
|
22 |
+
# replace attention with enhanceAvideo
|
23 |
+
for name, module in model.named_modules():
|
24 |
+
if "attn" in name and isinstance(module, Attention) and "transformer_blocks" in name:
|
25 |
+
module.set_processor(EnhanceHunyuanVideoAttnProcessor2_0())
|
26 |
+
|
27 |
+
|
28 |
+
def num_frames_hook(module, args, kwargs):
|
29 |
+
"""
|
30 |
+
Hook to update the number of frames automatically.
|
31 |
+
"""
|
32 |
+
if "hidden_states" in kwargs:
|
33 |
+
hidden_states = kwargs["hidden_states"]
|
34 |
+
else:
|
35 |
+
hidden_states = args[0]
|
36 |
+
num_frames = hidden_states.shape[2]
|
37 |
+
p_t = module.config.patch_size_t
|
38 |
+
post_patch_num_frames = num_frames // p_t
|
39 |
+
set_num_frames(post_patch_num_frames)
|
40 |
+
return args, kwargs
|
41 |
+
|
42 |
+
|
43 |
+
class EnhanceHunyuanVideoAttnProcessor2_0:
|
44 |
+
def __init__(self):
|
45 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
46 |
+
raise ImportError(
|
47 |
+
"HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0."
|
48 |
+
)
|
49 |
+
|
50 |
+
def _get_enhance_scores(self, attn, query, key, encoder_hidden_states):
|
51 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
52 |
+
img_q, img_k = query[:, :, : -encoder_hidden_states.shape[1]], key[:, :, : -encoder_hidden_states.shape[1]]
|
53 |
+
else:
|
54 |
+
img_q, img_k = query, key
|
55 |
+
|
56 |
+
num_frames = get_num_frames()
|
57 |
+
_, num_heads, ST, head_dim = img_q.shape
|
58 |
+
spatial_dim = ST / num_frames
|
59 |
+
spatial_dim = int(spatial_dim)
|
60 |
+
|
61 |
+
query_image = rearrange(
|
62 |
+
img_q, "B N (T S) C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim
|
63 |
+
)
|
64 |
+
key_image = rearrange(img_k, "B N (T S) C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim)
|
65 |
+
|
66 |
+
return enhance_score(query_image, key_image, head_dim, num_frames)
|
67 |
+
|
68 |
+
def __call__(
|
69 |
+
self,
|
70 |
+
attn: Attention,
|
71 |
+
hidden_states: torch.Tensor,
|
72 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
73 |
+
attention_mask: Optional[torch.Tensor] = None,
|
74 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
75 |
+
) -> torch.Tensor:
|
76 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
77 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
78 |
+
|
79 |
+
# 1. QKV projections
|
80 |
+
query = attn.to_q(hidden_states)
|
81 |
+
key = attn.to_k(hidden_states)
|
82 |
+
value = attn.to_v(hidden_states)
|
83 |
+
|
84 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
85 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
86 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
87 |
+
|
88 |
+
# 2. QK normalization
|
89 |
+
if attn.norm_q is not None:
|
90 |
+
query = attn.norm_q(query)
|
91 |
+
if attn.norm_k is not None:
|
92 |
+
key = attn.norm_k(key)
|
93 |
+
|
94 |
+
# 3. Rotational positional embeddings applied to latent stream
|
95 |
+
if image_rotary_emb is not None:
|
96 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
97 |
+
|
98 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
99 |
+
query = torch.cat(
|
100 |
+
[
|
101 |
+
apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
102 |
+
query[:, :, -encoder_hidden_states.shape[1] :],
|
103 |
+
],
|
104 |
+
dim=2,
|
105 |
+
)
|
106 |
+
key = torch.cat(
|
107 |
+
[
|
108 |
+
apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb),
|
109 |
+
key[:, :, -encoder_hidden_states.shape[1] :],
|
110 |
+
],
|
111 |
+
dim=2,
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
115 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
116 |
+
|
117 |
+
# ========== Enhance-A-Video ==========
|
118 |
+
if is_enhance_enabled():
|
119 |
+
enhance_scores = self._get_enhance_scores(attn, query, key, encoder_hidden_states)
|
120 |
+
# ========== Enhance-A-Video ==========
|
121 |
+
|
122 |
+
# 4. Encoder condition QKV projection and normalization
|
123 |
+
if attn.add_q_proj is not None and encoder_hidden_states is not None:
|
124 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
125 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
126 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
127 |
+
|
128 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
129 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
130 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
131 |
+
|
132 |
+
if attn.norm_added_q is not None:
|
133 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
134 |
+
if attn.norm_added_k is not None:
|
135 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
136 |
+
|
137 |
+
query = torch.cat([query, encoder_query], dim=2)
|
138 |
+
key = torch.cat([key, encoder_key], dim=2)
|
139 |
+
value = torch.cat([value, encoder_value], dim=2)
|
140 |
+
|
141 |
+
# 5. Attention
|
142 |
+
hidden_states = F.scaled_dot_product_attention(
|
143 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
144 |
+
)
|
145 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
146 |
+
hidden_states = hidden_states.to(query.dtype)
|
147 |
+
|
148 |
+
# 6. Output projection
|
149 |
+
if encoder_hidden_states is not None:
|
150 |
+
hidden_states, encoder_hidden_states = (
|
151 |
+
hidden_states[:, : -encoder_hidden_states.shape[1]],
|
152 |
+
hidden_states[:, -encoder_hidden_states.shape[1] :],
|
153 |
+
)
|
154 |
+
|
155 |
+
if getattr(attn, "to_out", None) is not None:
|
156 |
+
hidden_states = attn.to_out[0](hidden_states)
|
157 |
+
hidden_states = attn.to_out[1](hidden_states)
|
158 |
+
|
159 |
+
if getattr(attn, "to_add_out", None) is not None:
|
160 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
161 |
+
|
162 |
+
# ========== Enhance-A-Video ==========
|
163 |
+
if is_enhance_enabled():
|
164 |
+
hidden_states = hidden_states * enhance_scores
|
165 |
+
# ========== Enhance-A-Video ==========
|
166 |
+
|
167 |
+
return hidden_states, encoder_hidden_states
|