File size: 21,284 Bytes
2557c6e 2745124 3b5290e 2557c6e 3b5290e afceeed 3b5290e de858d1 3b5290e 2557c6e 3b5290e afceeed de858d1 c55eec4 3b5290e c55eec4 6752edd 3b5290e 6752edd 3b5290e 2745124 afceeed 829c2a5 3f51080 c55eec4 3f51080 afceeed 3f51080 4648c2c 829c2a5 3f51080 829c2a5 3f51080 829c2a5 606d9c1 829c2a5 3f51080 829c2a5 606d9c1 3f51080 606d9c1 3f51080 829c2a5 3f51080 829c2a5 3f51080 829c2a5 3f51080 829c2a5 606d9c1 afceeed c55eec4 829c2a5 afceeed 829c2a5 c55eec4 829c2a5 606d9c1 829c2a5 606d9c1 afceeed 3b5290e afceeed 606d9c1 afceeed 2557c6e 3b5290e 2557c6e 3b5290e de858d1 afceeed 606d9c1 de858d1 606d9c1 de858d1 3b5290e 4648c2c 3b5290e 4648c2c 3b5290e de858d1 4648c2c 2745124 de858d1 2745124 53c0486 de858d1 3b5290e 2557c6e 3b5290e 2557c6e de858d1 2557c6e de858d1 3b5290e 6752edd 3b5290e 6752edd 3b5290e de858d1 3b5290e de858d1 53c0486 6752edd de858d1 2557c6e afceeed 2557c6e afceeed 606d9c1 c55eec4 afceeed c55eec4 afceeed c55eec4 afceeed 3b5290e 6752edd afceeed de858d1 2557c6e de858d1 3b5290e 6752edd 3b5290e 6752edd 3b5290e 6752edd 3b5290e de858d1 3b5290e de858d1 c55eec4 de858d1 c55eec4 de858d1 3b5290e de858d1 6752edd c55eec4 de858d1 3b5290e de858d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
from typing import Dict, Any
import os
import shutil
import gc
import time
from pathlib import Path
import argparse
from datetime import datetime
from loguru import logger
import torch
import base64
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT, VAE_PATH, TEXT_ENCODER_PATH, TOKENIZER_PATH
try:
import triton
has_triton = True
except ImportError:
has_triton = False
try:
from mmgp import offload, safetensors2, profile_type
has_mmgp = True
except ImportError:
has_mmgp = False
# Configure logger
logger.add("handler_debug.log", rotation="500 MB")
DEFAULT_RESOLUTION = "720p"
DEFAULT_WIDTH = 1280
DEFAULT_HEIGHT = 720
DEFAULT_NB_FRAMES = (4 * 30) + 1 # or 129 (note: hunyan requires an extra +1 frame)
DEFAULT_NB_STEPS = 22 # Default for standard model
DEFAULT_FPS = 24
def get_attention_modes():
"""Get available attention modes - fallback if module function isn't available"""
modes = ["sdpa"] # Always available
try:
import torch
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
modes.append("sdpa")
except:
pass
try:
import flash_attn
modes.append("flash")
except:
pass
try:
import sageattention
modes.append("sage")
if hasattr(sageattention, 'efficient_attention_v2'):
modes.append("sage2")
except:
pass
try:
import xformers
modes.append("xformers")
except:
pass
return modes
# Get supported attention modes
try:
from hyvideo.modules.attenion import get_attention_modes
attention_modes_supported = get_attention_modes()
except:
attention_modes_supported = get_attention_modes()
def setup_vae_path(vae_path: Path) -> Path:
"""Create a temporary directory with correctly named VAE config file"""
tmp_vae_dir = Path("/tmp/vae")
if tmp_vae_dir.exists():
shutil.rmtree(tmp_vae_dir)
tmp_vae_dir.mkdir(parents=True)
# Copy files to temp directory
logger.info(f"Setting up VAE in temporary directory: {tmp_vae_dir}")
# Copy and rename config file
original_config = vae_path / "hunyuan-video-t2v-720p_vae_config.json"
new_config = tmp_vae_dir / "config.json"
shutil.copy2(original_config, new_config)
logger.info(f"Copied VAE config from {original_config} to {new_config}")
# Copy model file
original_model = vae_path / "pytorch_model.pt"
new_model = tmp_vae_dir / "pytorch_model.pt"
shutil.copy2(original_model, new_model)
logger.info(f"Copied VAE model from {original_model} to {new_model}")
return tmp_vae_dir
def get_default_args():
"""Create default arguments instead of parsing from command line"""
parser = argparse.ArgumentParser()
# Model configuration
parser.add_argument("--model", type=str, default="HYVideo-T/2-cfgdistill")
parser.add_argument("--model-resolution", type=str, default=DEFAULT_RESOLUTION, choices=["540p", "720p"])
parser.add_argument("--latent-channels", type=int, default=16)
parser.add_argument("--precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
parser.add_argument("--rope-theta", type=int, default=256)
parser.add_argument("--load-key", type=str, default="module")
parser.add_argument("--use-fp8", action="store_true", default=False)
# VAE settings
parser.add_argument("--vae", type=str, default="884-16c-hy")
parser.add_argument("--vae-precision", type=str, default="fp16")
parser.add_argument("--vae-tiling", action="store_true", default=True)
# Text encoder settings
parser.add_argument("--text-encoder", type=str, default="llm")
parser.add_argument("--text-encoder-precision", type=str, default="fp16")
parser.add_argument("--text-states-dim", type=int, default=4096)
parser.add_argument("--text-len", type=int, default=256)
parser.add_argument("--tokenizer", type=str, default="llm")
# Prompt template settings
parser.add_argument("--prompt-template", type=str, default="dit-llm-encode")
parser.add_argument("--prompt-template-video", type=str, default="dit-llm-encode-video")
# Additional text encoder settings
parser.add_argument("--hidden-state-skip-layer", type=int, default=2)
parser.add_argument("--apply-final-norm", action="store_true")
parser.add_argument("--text-encoder-2", type=str, default="clipL")
parser.add_argument("--text-encoder-precision-2", type=str, default="fp16")
parser.add_argument("--text-states-dim-2", type=int, default=768)
parser.add_argument("--tokenizer-2", type=str, default="clipL")
parser.add_argument("--text-len-2", type=int, default=77)
# Model architecture settings
parser.add_argument("--hidden-size", type=int, default=1024)
parser.add_argument("--heads-num", type=int, default=16)
parser.add_argument("--layers-num", type=int, default=24)
parser.add_argument("--mlp-ratio", type=float, default=4.0)
parser.add_argument("--use-guidance-net", action="store_true", default=True)
# Inference settings
parser.add_argument("--denoise-type", type=str, default="flow")
parser.add_argument("--flow-shift", type=float, default=7.0)
parser.add_argument("--flow-reverse", action="store_true", default=True)
parser.add_argument("--flow-solver", type=str, default="euler")
parser.add_argument("--use-linear-quadratic-schedule", action="store_true")
parser.add_argument("--linear-schedule-end", type=int, default=25)
# Hardware settings
parser.add_argument("--use-cpu-offload", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--infer-steps", type=int, default=DEFAULT_NB_STEPS)
parser.add_argument("--disable-autocast", action="store_true")
# Output settings
parser.add_argument("--save-path", type=str, default="outputs")
parser.add_argument("--save-path-suffix", type=str, default="")
parser.add_argument("--name-suffix", type=str, default="")
# Generation settings
parser.add_argument("--num-videos", type=int, default=1)
parser.add_argument("--video-size", nargs="+", type=int, default=[DEFAULT_HEIGHT, DEFAULT_WIDTH])
parser.add_argument("--video-length", type=int, default=DEFAULT_NB_FRAMES)
parser.add_argument("--prompt", type=str, default=None)
parser.add_argument("--seed-type", type=str, default="auto", choices=["file", "random", "fixed", "auto"])
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--neg-prompt", type=str, default="")
parser.add_argument("--cfg-scale", type=float, default=1.0)
parser.add_argument("--embedded-cfg-scale", type=float, default=6.0)
parser.add_argument("--reproduce", action="store_true")
# Parallel settings
parser.add_argument("--ulysses-degree", type=int, default=1)
parser.add_argument("--ring-degree", type=int, default=1)
# Added from gradio server
parser.add_argument("--attention", type=str, default="auto",
choices=["auto", "sdpa", "flash", "sage", "sage2", "xformers"])
parser.add_argument("--profile", type=int, default=1) # HighRAM_HighVRAM
parser.add_argument("--quantize-transformer", action="store_true", default=False)
parser.add_argument("--tea-cache", type=float, default=0.0)
parser.add_argument("--compile", action="store_true", default=False)
parser.add_argument("--enable-riflex", action="store_true", default=True)
parser.add_argument("--vae-config", type=int, default=0)
# Parse with empty args list to avoid reading sys.argv
args = parser.parse_args([])
return args
def get_auto_attention():
"""Select the best available attention mode"""
for attn in ["sage2", "sage", "sdpa"]:
if attn in attention_modes_supported:
return attn
return "sdpa"
def setup_vae_config(device_mem_capacity, vae, vae_config=0):
"""Configure VAE tiling based on available VRAM"""
if vae_config == 0:
# Auto-select based on VRAM
if device_mem_capacity >= 24000:
use_vae_config = 1
elif device_mem_capacity >= 16000:
use_vae_config = 3
elif device_mem_capacity >= 12000:
use_vae_config = 4
else:
use_vae_config = 5
else:
use_vae_config = vae_config
# VAE tiling configuration options
if use_vae_config == 1:
sample_tsize = 32
sample_size = 256
elif use_vae_config == 2:
sample_tsize = 64
sample_size = 192
elif use_vae_config == 3:
sample_tsize = 32
sample_size = 192
elif use_vae_config == 4:
sample_tsize = 16
sample_size = 256
else:
sample_tsize = 16
sample_size = 192
# Apply settings
vae.tile_sample_min_tsize = sample_tsize
vae.tile_latent_min_tsize = sample_tsize // vae.time_compression_ratio
vae.tile_sample_min_size = sample_size
vae.tile_latent_min_size = int(sample_size / (2 ** (len(vae.config.block_out_channels) - 1)))
vae.tile_overlap_factor = 0.25
return use_vae_config
class EndpointHandler:
def __init__(self, path: str = ""):
"""Initialize the handler with model path and config."""
logger.info(f"Initializing EndpointHandler with path: {path}")
# Use default args instead of parsing from command line
self.args = get_default_args()
# Convert path to absolute path if not already
path = str(Path(path).absolute())
logger.info(f"Absolute path: {path}")
# Set up model paths
self.args.model_base = path
# Model configurations
self.init_model_paths(path)
self.configure_model()
# Initialize model
self.initialize_model()
def init_model_paths(self, path):
"""Setup paths for model components"""
# We'll use the FP8 model for memory efficiency
self.args.use_fp8 = True
# Model component paths
dit_weight_path = Path(path) / "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt"
original_vae_path = Path(path) / "hunyuan-video-t2v-720p/vae"
# Log all critical paths
logger.info(f"Model base path: {self.args.model_base}")
logger.info(f"DiT weight path: {dit_weight_path}")
logger.info(f"Use fp8: {self.args.use_fp8}")
logger.info(f"Original VAE path: {original_vae_path}")
# Verify paths exist
logger.info("Checking if paths exist:")
logger.info(f"DiT weight exists: {dit_weight_path.exists()}")
logger.info(f"VAE path exists: {original_vae_path.exists()}")
if original_vae_path.exists():
logger.info(f"VAE path contents: {list(original_vae_path.glob('*'))}")
# Set up VAE in temporary directory with correct file names
tmp_vae_path = setup_vae_path(original_vae_path)
# Override the VAE path in constants to use our temporary directory
VAE_PATH["884-16c-hy"] = str(tmp_vae_path)
logger.info(f"Updated VAE_PATH to: {VAE_PATH['884-16c-hy']}")
# Update text encoder paths to use absolute paths
text_encoder_path = str(Path(path) / "text_encoder")
text_encoder_2_path = str(Path(path) / "text_encoder_2")
# Update both text encoder and tokenizer paths
TEXT_ENCODER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
TOKENIZER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
logger.info(f"Updated text encoder paths:")
logger.info(f"TEXT_ENCODER_PATH['llm']: {TEXT_ENCODER_PATH['llm']}")
logger.info(f"TEXT_ENCODER_PATH['clipL']: {TEXT_ENCODER_PATH['clipL']}")
logger.info(f"TOKENIZER_PATH['llm']: {TOKENIZER_PATH['llm']}")
logger.info(f"TOKENIZER_PATH['clipL']: {TOKENIZER_PATH['clipL']}")
self.args.dit_weight = str(dit_weight_path)
def configure_model(self):
"""Configure model based on available hardware and settings"""
# Set attention mode (auto-select best available if set to 'auto')
if self.args.attention == "auto":
self.attention_mode = get_auto_attention()
elif self.args.attention in attention_modes_supported:
self.attention_mode = self.args.attention
else:
logger.warning(f"Attention mode {self.args.attention} not supported. Falling back to sdpa.")
self.attention_mode = "sdpa"
logger.info(f"Using attention mode: {self.attention_mode}")
# Set compilation flag based on Triton availability
if self.args.compile and not has_triton:
logger.warning("Compilation requested but Triton not available. Compilation disabled.")
self.args.compile = False
# Set profile based on memory configuration
# We default to HighRAM_HighVRAM (1) as specified
if has_mmgp:
self.profile = self.args.profile
logger.info(f"Using memory profile: {self.profile}")
else:
logger.warning("MMGP not available. Memory profiles not used.")
def initialize_model(self):
"""Initialize the model with configured settings"""
models_root_path = Path(self.args.model_base)
if not models_root_path.exists():
raise ValueError(f"models_root_path does not exist: {models_root_path}")
try:
logger.info("Attempting to initialize HunyuanVideoSampler...")
# Extract necessary paths
transformer_path = str(self.args.dit_weight)
text_encoder_path = str(Path(self.args.model_base) / "text_encoder")
logger.info(f"Transformer path: {transformer_path}")
logger.info(f"Text encoder path: {text_encoder_path}")
# Initialize the model using the exact signature from gradio_server.py
self.model = HunyuanVideoSampler.from_pretrained(
transformer_path,
text_encoder_path,
attention_mode=self.attention_mode,
args=self.args
)
# Set attention mode for transformer blocks
if hasattr(self.model, 'pipeline') and hasattr(self.model.pipeline, 'transformer'):
transformer = self.model.pipeline.transformer
transformer.attention_mode = self.attention_mode
# Apply to all blocks
if hasattr(transformer, 'double_blocks'):
for module in transformer.double_blocks:
module.attention_mode = self.attention_mode
if hasattr(transformer, 'single_blocks'):
for module in transformer.single_blocks:
module.attention_mode = self.attention_mode
# Enable compilation if requested
if self.args.compile:
transformer.any_compilation = True
logger.info("PyTorch compilation enabled for transformer")
# Enable TeaCache if requested
if self.args.tea_cache > 0:
transformer.enable_teacache = True
transformer.rel_l1_thresh = self.args.tea_cache
logger.info(f"TeaCache enabled with threshold: {self.args.tea_cache}")
else:
transformer.enable_teacache = False
# Apply VAE tiling configuration if supported
if hasattr(self.model, 'vae'):
if torch.cuda.is_available():
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
vae_config = setup_vae_config(device_mem_capacity, self.model.vae, self.args.vae_config)
logger.info(f"Configured VAE tiling with config: {vae_config}")
else:
logger.warning("CUDA not available, using default VAE configuration")
logger.info("Successfully initialized HunyuanVideoSampler")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
raise
def __call__(self, data: Dict[str, Any]) -> str:
"""Process a single request"""
# Log incoming request
logger.info(f"Processing request with data: {data}")
# Get inputs from request data
prompt = data.pop("inputs", None)
if prompt is None:
raise ValueError("No prompt provided in the 'inputs' field")
# Parse resolution
resolution = data.pop("resolution", f"{DEFAULT_WIDTH}x{DEFAULT_HEIGHT}")
width, height = map(int, resolution.split("x"))
# Get other parameters with defaults
video_length = int(data.pop("video_length", DEFAULT_NB_FRAMES))
seed = data.pop("seed", -1)
seed = None if seed == -1 else int(seed)
num_inference_steps = int(data.pop("num_inference_steps", DEFAULT_NB_STEPS))
guidance_scale = float(data.pop("guidance_scale", 1.0))
flow_shift = float(data.pop("flow_shift", 7.0))
embedded_guidance_scale = float(data.pop("embedded_guidance_scale", 6.0))
enable_riflex = data.pop("enable_riflex", self.args.enable_riflex)
tea_cache = float(data.pop("tea_cache", 0.0))
logger.info(f"Processing with parameters: width={width}, height={height}, "
f"video_length={video_length}, seed={seed}, "
f"num_inference_steps={num_inference_steps}")
try:
# Set up TeaCache for this generation if enabled
if hasattr(self.model.pipeline, 'transformer') and tea_cache > 0:
transformer = self.model.pipeline.transformer
transformer.enable_teacache = True
transformer.num_steps = num_inference_steps
transformer.cnt = 0
transformer.rel_l1_thresh = tea_cache
transformer.accumulated_rel_l1_distance = 0
transformer.previous_modulated_input = None
transformer.previous_residual = None
# Clean up memory before generation
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Run inference
outputs = self.model.predict(
prompt=prompt,
height=height,
width=width,
video_length=video_length,
seed=seed,
negative_prompt="",
infer_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_videos_per_prompt=1,
flow_shift=flow_shift,
batch_size=1,
embedded_guidance_scale=embedded_guidance_scale,
enable_riflex=enable_riflex
)
# Get the video tensor
samples = outputs['samples']
sample = samples[0].unsqueeze(0)
# Save to temporary file
temp_path = "/tmp/temp_video.mp4"
save_videos_grid(sample, temp_path, fps=DEFAULT_FPS)
# Read video file and convert to base64
with open(temp_path, "rb") as f:
video_bytes = f.read()
video_base64 = base64.b64encode(video_bytes).decode()
# Add MP4 data URI prefix
video_data_uri = f"data:video/mp4;base64,{video_base64}"
# Cleanup
os.remove(temp_path)
# Clean up memory after generation
if has_mmgp and hasattr(offload, 'last_offload_obj'):
offload.last_offload_obj.unload_all()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("Successfully generated and encoded video")
# Return exactly what the demo.py expects
return video_data_uri
except Exception as e:
logger.error(f"Error during video generation: {str(e)}")
# Clean up memory after error
if has_mmgp and hasattr(offload, 'last_offload_obj'):
offload.last_offload_obj.unload_all()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise |