File size: 8,831 Bytes
2df6ae7
 
 
 
 
 
 
 
 
af36d5a
8b4a69c
af36d5a
2df6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4a69c
 
8b8ed09
8b4a69c
8d2995d
 
 
 
 
2df6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b4a69c
8b8ed09
 
8d2995d
8b8ed09
8d2995d
 
2df6ae7
 
 
 
 
 
 
 
 
 
 
8b4a69c
 
 
 
 
 
 
 
 
 
2df6ae7
 
 
 
97a4a3d
 
 
 
2df6ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d2995d
8b4a69c
8d2995d
 
2df6ae7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from dataclasses import dataclass
from typing import Dict, Any, Optional
import base64
import logging
import random
import torch
from diffusers import HunyuanVideoPipeline
from varnish import Varnish

from enhance_a_video import enable_enhance, inject_enhance_for_hunyuanvideo, set_enhance_weight
from teacache import enable_teacache, disable_teacache

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class GenerationConfig:
    """Configuration for video generation"""
    # Content settings
    prompt: str
    negative_prompt: str = ""
    
    # Model settings
    num_frames: int = 49  # Should be 4k + 1 format
    height: int = 320
    width: int = 576
    num_inference_steps: int = 50
    guidance_scale: float = 7.0
    
    # Reproducibility
    seed: int = -1
    
    # Varnish post-processing settings
    fps: int = 30
    double_num_frames: bool = False
    super_resolution: bool = False
    grain_amount: float = 0.0
    quality: int = 18  # CRF scale (0-51, lower is better)
    
    # Audio settings
    enable_audio: bool = False
    audio_prompt: str = ""
    audio_negative_prompt: str = "voices, voice, talking, speaking, speech"

    # TeaCache settings
    enable_teacache: bool = True
    teacache_threshold: float = 0.15 # values: 0 (original), 0.1 (1.6x speedup), 0.15 (2.1x speedup)

    
    # Enhance-A-Video settings
    enable_enhance_a_video: bool = True
    enhance_a_video_weight: float = 4.0

    def validate_and_adjust(self) -> 'GenerationConfig':
        """Validate and adjust parameters"""
        # Ensure num_frames follows 4k + 1 format
        k = (self.num_frames - 1) // 4
        self.num_frames = (k * 4) + 1
        
        # Set random seed if not specified
        if self.seed == -1:
            self.seed = random.randint(0, 2**32 - 1)
            
        return self

class EndpointHandler:
    """Handles video generation requests using HunyuanVideo and Varnish"""
    
    def __init__(self, path: str = ""):
        """Initialize handler with models
        
        Args:
            path: Path to model weights
        """
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        # Initialize HunyuanVideo pipeline
        self.pipeline = HunyuanVideoPipeline.from_pretrained(
            path,
            torch_dtype=torch.float16,
        ).to(self.device)
        
        # Initialize text encoders in float16
        self.pipeline.text_encoder = self.pipeline.text_encoder.half()
        self.pipeline.text_encoder_2 = self.pipeline.text_encoder_2.half()
        
        # Initialize transformer in bfloat16 
        self.pipeline.transformer = self.pipeline.transformer.to(torch.bfloat16)
        
        # Initialize VAE in float16
        self.pipeline.vae = self.pipeline.vae.half()
        
        # Initialize Varnish for post-processing
        self.varnish = Varnish(
            device=self.device,
            model_base_dir="/repository/varnish"
        )

    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Process video generation requests
        
        Args:
            data: Request data containing:
                - inputs (str): Prompt for video generation
                - parameters (dict): Generation parameters
                
        Returns:
            Dictionary containing:
                - video: Base64 encoded MP4 data URI
                - content-type: MIME type
                - metadata: Generation metadata
        """
        # Extract inputs
        inputs = data.pop("inputs", data)
        if isinstance(inputs, dict):
            prompt = inputs.get("prompt", "")
        else:
            prompt = inputs
            
        params = data.get("parameters", {})
        
        # Create and validate config
        config = GenerationConfig(
            prompt=prompt,
            negative_prompt=params.get("negative_prompt", ""),
            num_frames=params.get("num_frames", 49),
            height=params.get("height", 320),
            width=params.get("width", 576),
            num_inference_steps=params.get("num_inference_steps", 50),
            guidance_scale=params.get("guidance_scale", 7.0),
            seed=params.get("seed", -1),
            fps=params.get("fps", 30),
            double_num_frames=params.get("double_num_frames", False),
            super_resolution=params.get("super_resolution", False),
            grain_amount=params.get("grain_amount", 0.0),
            quality=params.get("quality", 18),
            enable_audio=params.get("enable_audio", False),
            audio_prompt=params.get("audio_prompt", ""),
            audio_negative_prompt=params.get("audio_negative_prompt", "voices, voice, talking, speaking, speech"),
            enable_teacache=params.get("enable_teacache", True),

            # values: 0 (original), 0.1 (1.6x speedup), 0.15 (2.1x speedup).
            teacache_threshold=params.get("teacache_threshold", 0.15),
            
            enable_enhance_a_video=params.get("enable_enhance_a_video", True),
            enhance_a_video_weight=params.get("enhance_a_video_weight", 4.0)
        ).validate_and_adjust()

        try:
            # Set random seeds
            if config.seed != -1:
                torch.manual_seed(config.seed)
                random.seed(config.seed)
                generator = torch.Generator(device=self.device).manual_seed(config.seed)
            else:
                generator = None

            # Configure TeaCache
            if config.enable_teacache:
                enable_teacache(
                    self.pipeline.transformer,
                    num_inference_steps=config.num_inference_steps,
                    rel_l1_thresh=config.teacache_threshold
                )
            else:
                disable_teacache(self.pipeline.transformer)

            # Generate video frames
            with torch.inference_mode():
                output = self.pipeline(
                    prompt=config.prompt,

                    # Failed to generate video: HunyuanVideoPipeline.__call__() got an unexpected keyword argument 'negative_prompt'
                    #negative_prompt=config.negative_prompt,
                    
                    num_frames=config.num_frames,
                    height=config.height,
                    width=config.width,
                    num_inference_steps=config.num_inference_steps,
                    guidance_scale=config.guidance_scale,
                    generator=generator,
                    output_type="pt",
                ).frames

                # Process with Varnish
                import asyncio
                try:
                    loop = asyncio.get_event_loop()
                except RuntimeError:
                    loop = asyncio.new_event_loop()
                    asyncio.set_event_loop(loop)

                result = loop.run_until_complete(
                    self.varnish(
                        input_data=output,
                        fps=config.fps,
                        double_num_frames=config.double_num_frames,
                        super_resolution=config.super_resolution,
                        grain_amount=config.grain_amount,
                        enable_audio=config.enable_audio,
                        audio_prompt=config.audio_prompt,
                        audio_negative_prompt=config.audio_negative_prompt,
                    )
                )

                # Get video data URI
                video_uri = loop.run_until_complete(
                    result.write(
                        type="data-uri",
                        quality=config.quality
                    )
                )

                return {
                    "video": video_uri,
                    "content-type": "video/mp4",
                    "metadata": {
                        "width": result.metadata.width,
                        "height": result.metadata.height,
                        "num_frames": result.metadata.frame_count,
                        "fps": result.metadata.fps,
                        "duration": result.metadata.duration,
                        "seed": config.seed,
                        "enable_teacache": config.enable_teacache,
                        "teacache_threshold": config.teacache_threshold if config.enable_teacache else 0,
                        "enable_enhance_a_video": config.enable_enhance_a_video,
                        "enhance_a_video_weight": config.enhance_a_video_weight if config.enable_enhance_a_video else 0,
                    }
                }

        except Exception as e:
            logger.error(f"Error generating video: {str(e)}")
            raise RuntimeError(f"Failed to generate video: {str(e)}")