jays009 commited on
Commit
b7e8266
·
verified ·
1 Parent(s): a2224f2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model_name: Crop Anomaly Detection Model - 3 Class
3
+ tags:
4
+ - pytorch
5
+ - resnet50
6
+ - agriculture
7
+ - anomaly-detection
8
+ - wheat
9
+ - plant-disease
10
+ license: apache-2.0
11
+ library_name: transformers
12
+ datasets:
13
+ - Crop-disease-dataset
14
+ model_type: resnet50
15
+ num_classes: 3
16
+ classes:
17
+ - fall armyworm
18
+ - p_def
19
+ - blb
20
+ preprocessing:
21
+ resize: 256
22
+ center_crop: 224
23
+ normalize:
24
+ - 0.485
25
+ - 0.456
26
+ - 0.406
27
+ normalize_std:
28
+ - 0.229
29
+ - 0.224
30
+ - 0.225
31
+ framework: pytorch
32
+ task: image-classification
33
+ pipeline_tag: image-classification
34
+
35
+ ---
36
+
37
+
38
+ Wheat Anomaly Detection Model
39
+
40
+ Overview
41
+
42
+ This is a ResNet50-based image classification model designed for wheat anomaly detection. It classifies images into three categories:
43
+
44
+ Fall Armyworm (fa)
45
+
46
+ Phosphorus Deficiency (p_def)
47
+
48
+ Bacterial Leaf Blight (blb)
49
+
50
+ The model has been fine-tuned on an agricultural dataset and optimized for accurate detection of these anomalies.
51
+
52
+ Model Performance
53
+
54
+ Validation Accuracy: 93.82%
55
+
56
+ Class-wise Accuracy:
57
+
58
+ Fall Armyworm: 100.00%
59
+
60
+ Phosphorus Deficiency: 86.21%
61
+
62
+ Bacterial Leaf Blight: 95.00%
63
+
64
+ Installation
65
+
66
+ Ensure you have transformers, torch, and gradio installed:
67
+
68
+ Usage
69
+
70
+ Here is an example of how to load and use the model for prediction using PyTorch:
71
+
72
+ Dataset
73
+
74
+ The model was trained using the Wheat Disease Dataset with balanced classes. Ensure your images are resized to 224x224 and normalized using the provided values.
75
+
76
+ License
77
+
78
+ This model is licensed under the Apache-2.0 License. You are free to use, modify, and distribute it under the terms of the license.