jays009 commited on
Commit
5a4bfdf
·
verified ·
1 Parent(s): cc00c36

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model_name: Wheat Anomaly Detection Model
3
+ tags:
4
+ - pytorch
5
+ - resnet
6
+ - agriculture
7
+ - anomaly-detection
8
+ - image-classification
9
+ - wheat-disease-detection
10
+ - pest-detection
11
+ - agricultural-ai
12
+ license: apache-2.0
13
+ library_name: pytorch
14
+ datasets:
15
+ - wheat-dataset # Replace with the actual dataset name on Hugging Face if available
16
+ model_type: resnet50
17
+ preprocessing:
18
+ - resize: 256
19
+ - center_crop: 224
20
+ - normalize: [0.485, 0.456, 0.406]
21
+ - normalize_std: [0.229, 0.224, 0.225]
22
+ framework: pytorch
23
+ task: image-classification
24
+ pipeline_tag: image-classification
25
+
26
+ ---
27
+
28
+ # Wheat Anomaly Detection Model
29
+
30
+ ## Model Overview
31
+
32
+ This model is trained to detect anomalies in wheat crops, such as pest infections (e.g., Fall Armyworm), diseases, or nutrient deficiencies. The model is based on the **ResNet50** architecture and was fine-tuned on a dataset of wheat images.
33
+
34
+ ## Model Details
35
+
36
+ - **Model Architecture**: ResNet50
37
+ - **Number of Classes**: 2 (Fall Armyworm, Healthy Wheat)
38
+ - **Input Shape**: 224x224 pixels, 3 channels (RGB)
39
+ - **Training Framework**: PyTorch
40
+ - **Optimizer**: Adam
41
+ - **Learning Rate**: 0.001
42
+ - **Epochs**: 20
43
+ - **Batch Size**: 32
44
+
45
+ ## Training
46
+
47
+ The model was fine-tuned using a balanced dataset with images of healthy wheat and wheat infected by fall armyworms. The training involved transferring knowledge from a pretrained ResNet50 model and adjusting the final classification layer for the binary classification task.
48
+
49
+ ### Dataset
50
+
51
+ The model was trained on a dataset hosted on Hugging Face. You can access it here:
52
+
53
+ - **Dataset**: `your_huggingface_username/your_dataset_name`
54
+
55
+ ## How to Use
56
+
57
+ To load and use this model in PyTorch, follow the steps below:
58
+
59
+ ### 1. Load the Model
60
+
61
+ ```python
62
+ import torch
63
+ import timm
64
+
65
+ # Load the pre-trained model (fine-tuned ResNet50 for wheat anomaly detection)
66
+ model = timm.create_model("resnet50", pretrained=False, num_classes=2)
67
+ model.load_state_dict(torch.load("path_to_saved_model.pth"))
68
+ model.eval()