Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 266.29 +/- 22.50
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d075b6da4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d075b6da560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d075b6da5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d075b6da680>", "_build": "<function ActorCriticPolicy._build at 0x7d075b6da710>", "forward": "<function ActorCriticPolicy.forward at 0x7d075b6da7a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d075b6da830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d075b6da8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d075b6da950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d075b6da9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d075b6daa70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d075b6dab00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d075b6d5500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713176330409635728, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZChj4prQo//vGnvgr1sb4QRis+foubvgAAAAAAAAAA2slTPitNhj9e8uo+dbwTv4GLjz5biVE9AAAAAAAAAACaJUg9XKMjujAvNTQBdFYwczCTu6Cbn7MAAIA/AACAP+aeU71XPro/dBoev96QHD5FT1M73X7bvQAAAAAAAAAAxmYmvhvD0T0q+cE9f+1Tvl/BNry2ujy9AAAAAAAAAABmEnC9J1dDPwjg1z1me6++j/9+vH7HyDwAAAAAAAAAAIAZBr2u9au6TTACNLM1ki4fNzi4xECkswAAgD8AAIA/Td2PvUjNj7oGwBs4hAg+MybrGjsS5jO3AACAPwAAgD+anzu8nMewP2NOwL687e++i14IPHbqmzwAAAAAAAAAAIDwQL7jKgo/fj14Pgz00r6te5o8Y7DsPQAAAAAAAAAAWk7IPR8Vvrm/LykzEPYgMF+fBju+M8GzAACAPwAAgD+r/Zq+lUx4P2rn2z1GoeG+OsC6vrbJdz4AAAAAAAAAADNNMryc85U+3ucFPl7xl7503/g9h52pvQAAAAAAAAAAjdutvVwbP7qTuYq5QD8UtVkOt7sGlqA4AAAAAAAAgD9mJhQ6qTVnvOzBtLwkwom94C/UvUudYL4AAIA/AACAPwDvNb6yZIE/vf/yPV67zb49PbO9SjIkPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzhnH3lCC2MAWyUTSgBjAF0lEdAktGPN3W4E3V9lChoBkdAbsE+MZP2wmgHS/5oCEdAktHANXo1UHV9lChoBkdAbzQxHoX9BWgHTR8BaAhHQJLRx5nlGPR1fZQoaAZHQG9S2Yv38GdoB00TAWgIR0CS0dGnGbTddX2UKGgGR0BxnmsA/9pAaAdNLAFoCEdAktJBX0XgtXV9lChoBkdAb/BnIQvpQmgHTQsBaAhHQJLSb9ehPCV1fZQoaAZHQHDZnl0YCQtoB00mAWgIR0CS0wSG8EmqdX2UKGgGR0BFivbGm1pkaAdLjGgIR0CS04q6e5FxdX2UKGgGR0BvvCIvalDXaAdNXgFoCEdAktQPNzKcNHV9lChoBkdAcVXfsu3+dmgHTRgBaAhHQJLUcP4EfT11fZQoaAZHQHM48/6frbBoB00IAWgIR0CS1Rf6XSjQdX2UKGgGR0BwKQtdzGPxaAdNUQFoCEdAktUc3IdU83V9lChoBkdAb/rR2r4nGGgHTQcBaAhHQJLViG21D0F1fZQoaAZHQHKHBpQDV6NoB00uAWgIR0CS1drfcer/dX2UKGgGR0BC2RXOnl4kaAdLzmgIR0CS1d/jKgZkdX2UKGgGR0BwSMIHC4z8aAdNXwFoCEdAktZZaaCtinV9lChoBkdAQFde+mFajmgHS8JoCEdAktiCIDYAbXV9lChoBkdAcWfWFvhqCmgHTQsBaAhHQJLY5nscABF1fZQoaAZHQHJAtV7x/d9oB0v7aAhHQJLZD5VOsT51fZQoaAZHQEXdWRRuTA5oB0u6aAhHQJLZz8dgfEJ1fZQoaAZHQHAwC9IwudxoB00hAWgIR0CS2f5dnkDIdX2UKGgGR0BwRVV3ljmTaAdNNwFoCEdAktoFLWZqmHV9lChoBkdAbhu+tbLU1GgHTTsBaAhHQJLaSWldkax1fZQoaAZHQHFPrEgntv5oB0voaAhHQJLabqcEvCd1fZQoaAZHQHKxNLQHAypoB01iAWgIR0CS20crAgxKdX2UKGgGR0BPGbZWaMJhaAdLv2gIR0CS21gQYk3TdX2UKGgGR0Bxuy7GvOhTaAdNOAFoCEdAktwtLxqfvnV9lChoBkdAcHUUn5SFXmgHTSwBaAhHQJLc24NI9Tx1fZQoaAZHQHGjmuHN5dJoB00/AWgIR0CS3feLNwBHdX2UKGgGR0BwcJt4zJp4aAdNPAFoCEdAkt5R91EE1XV9lChoBkdAcbXuDBdld2gHTUsBaAhHQJLevM3ZPEd1fZQoaAZHQEvlewcHWz5oB0vPaAhHQJLfrE/B3zN1fZQoaAZHQB0w3Lmp2lloB0vHaAhHQJLf9e9i+cp1fZQoaAZHQHFFQFcIJJJoB0v4aAhHQJLgJhvze411fZQoaAZHQG/0cMEzO5doB00jAWgIR0CS4OZFXq7idX2UKGgGR0BtN2r2g398aAdL+2gIR0CS4UbHp8nedX2UKGgGR0BKiHt4RmK7aAdLyWgIR0CS4VYPGyX2dX2UKGgGR0BvaMiY9gWraAdNAAFoCEdAkuL6m0mdAnV9lChoBkdAcs87r9l2/2gHTTkBaAhHQJLjLBhx5s11fZQoaAZHQHD/P2bobGZoB00xAWgIR0CS424BFNL2dX2UKGgGR0Bx+CMVDa4+aAdNcgFoCEdAkuO+3x4IKXV9lChoBkdAc3IuRLbpNmgHTSUBaAhHQJLk6lLvkR11fZQoaAZHQHCla7Ackt5oB00UAWgIR0CS5RYgJTl1dX2UKGgGR0BygCm0mdAgaAdL/mgIR0CS5cjHGS6ldX2UKGgGR0BSlYDs+mm+aAdLwWgIR0CS5nP1L8JldX2UKGgGR0Bx1D9fkWAPaAdNOgFoCEdAkvoYo3JgcHV9lChoBkdAcXZgOjIq9WgHTUQBaAhHQJL7McrAgxJ1fZQoaAZHQHEEueSSvDBoB00IAWgIR0CS++mAskIHdX2UKGgGR0BU50DZDiOvaAdL2WgIR0CS/CsU7CBPdX2UKGgGR0BxKgvqTr3TaAdNOgFoCEdAkvxpAD7qIXV9lChoBkdAbxG2pAD7qWgHTVcBaAhHQJL82gUUO/d1fZQoaAZHQHLzhUvPC2toB00VAWgIR0CS/ug2606YdX2UKGgGR0Bw++7+T/yYaAdNLAFoCEdAkv8IQOFxn3V9lChoBkdAbW+HCXQdCGgHS/doCEdAkv+Td+G47XV9lChoBkdAcjVOCGvfTGgHTagBaAhHQJL/sfgaWHF1fZQoaAZHQHALDINmUW5oB018AWgIR0CS/7BikO7QdX2UKGgGR0Bw0JdyDIzWaAdNQgFoCEdAkv/1+iJwbXV9lChoBkdAccM7CiyprGgHTRwBaAhHQJMBX6vaDf51fZQoaAZHQHIHumelKsdoB00PAWgIR0CTAn5mh/RWdX2UKGgGR0Beunvx6OYIaAdN6ANoCEdAkwK8b70nPXV9lChoBkdAcBUHGS6lL2gHTQUBaAhHQJMDN8UmD151fZQoaAZHQFTdjvNNahZoB0vpaAhHQJMDdMvh60J1fZQoaAZHQHDSCxzJZGNoB0v+aAhHQJMEeFdszl91fZQoaAZHQHIF/GyX2M9oB015AWgIR0CTBNkE9t/GdX2UKGgGR0Bydq07bL2YaAdNJAFoCEdAkwUI6jnFHnV9lChoBkdAcPKk4FRpDmgHTTIBaAhHQJMFNX5nDix1fZQoaAZHQHJRWDL8rI5oB00TAWgIR0CTBwguRLbpdX2UKGgGR0BvkxsuWa+faAdNIwFoCEdAkwew7PppvnV9lChoBkdAbnUYbbUPQWgHTQQBaAhHQJMHsRnOB191fZQoaAZHQG7cRDTjNpxoB00iAmgIR0CTCEQFLWZrdX2UKGgGR0Bx4RQXQ+lkaAdNKwFoCEdAkwiVymygPHV9lChoBkdAcOhcgyM1j2gHTSwBaAhHQJMIoUFjd591fZQoaAZHQHCOFHFxXGRoB00MAWgIR0CTCVbyH2ytdX2UKGgGR0BLGhEa2nbZaAdLsGgIR0CTCfnQID5kdX2UKGgGR0BvPFxZMcp9aAdNEwFoCEdAkwp6asp5NXV9lChoBkdAcrFreqJdjWgHTREBaAhHQJMKotvn8sN1fZQoaAZHQHK6yFbmlqJoB00WAWgIR0CTCzFhoduHdX2UKGgGR0BygWzWwu/UaAdNAgFoCEdAkwxJfMOf/XV9lChoBkdAcyVWjoIOY2gHTUEBaAhHQJMMk5wOvuB1fZQoaAZHQHMPQ97ngYRoB009AWgIR0CTDX1pj+aSdX2UKGgGR0BUngr6LwWnaAdLvWgIR0CTDpFocrAhdX2UKGgGR0BzbsidJ8OTaAdNUwFoCEdAkw7pSm65G3V9lChoBkdAcSlBH09QoGgHTQ4BaAhHQJMPUvpQk5Z1fZQoaAZHQFNW48U21lZoB0umaAhHQJMPZhqj8DV1fZQoaAZHQG99rwe/5+JoB00sAWgIR0CTD6Il+mWMdX2UKGgGR0Bw7Vu89Oh1aAdNBQFoCEdAkw+gsGxD9nV9lChoBkdAcF8VpKzzE2gHTR4BaAhHQJMPyH446wN1fZQoaAZHQHGIyLdepn9oB00UAWgIR0CTEEpztCzDdX2UKGgGR0Bw+not+TePaAdNIQFoCEdAkxCS+De0onV9lChoBkdAcq0/dIoVmGgHTRUBaAhHQJMRsGbCrLh1fZQoaAZHQHJD6OtGNJhoB02SAmgIR0CTEm0cwQDndX2UKGgGR0Bx2yYIBzV+aAdL/2gIR0CTE5iblRxcdX2UKGgGR0BxiVbcGkeqaAdL+GgIR0CTFKy+Yc//dX2UKGgGR0BwfF0PpY9xaAdNUgFoCEdAkxTyzXz19XV9lChoBkdAcBgNSIgvDmgHTSIBaAhHQJMVD6sQumJ1fZQoaAZHQG/bSvC/Gl1oB015AWgIR0CTFUGY8dPtdX2UKGgGR0Bz3Gjh1klNaAdL6WgIR0CTFY+b3Gn5dX2UKGgGR0BzWKBg/keZaAdL+GgIR0CTFlzMA3kxdX2UKGgGR0BwL2+oLofTaAdNMAFoCEdAkxczXarWAnV9lChoBkdAcF9SPU8V6GgHTR0BaAhHQJMXVaNdZ7p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3bbd86bc847d271eadab5600844b718562c247fa74c119ebd7a327142376a71e
|
3 |
+
size 148052
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d075b6da4d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d075b6da560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d075b6da5f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d075b6da680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d075b6da710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d075b6da7a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d075b6da830>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d075b6da8c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d075b6da950>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d075b6da9e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d075b6daa70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d075b6dab00>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d075b6d5500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1713176330409635728,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZChj4prQo//vGnvgr1sb4QRis+foubvgAAAAAAAAAA2slTPitNhj9e8uo+dbwTv4GLjz5biVE9AAAAAAAAAACaJUg9XKMjujAvNTQBdFYwczCTu6Cbn7MAAIA/AACAP+aeU71XPro/dBoev96QHD5FT1M73X7bvQAAAAAAAAAAxmYmvhvD0T0q+cE9f+1Tvl/BNry2ujy9AAAAAAAAAABmEnC9J1dDPwjg1z1me6++j/9+vH7HyDwAAAAAAAAAAIAZBr2u9au6TTACNLM1ki4fNzi4xECkswAAgD8AAIA/Td2PvUjNj7oGwBs4hAg+MybrGjsS5jO3AACAPwAAgD+anzu8nMewP2NOwL687e++i14IPHbqmzwAAAAAAAAAAIDwQL7jKgo/fj14Pgz00r6te5o8Y7DsPQAAAAAAAAAAWk7IPR8Vvrm/LykzEPYgMF+fBju+M8GzAACAPwAAgD+r/Zq+lUx4P2rn2z1GoeG+OsC6vrbJdz4AAAAAAAAAADNNMryc85U+3ucFPl7xl7503/g9h52pvQAAAAAAAAAAjdutvVwbP7qTuYq5QD8UtVkOt7sGlqA4AAAAAAAAgD9mJhQ6qTVnvOzBtLwkwom94C/UvUudYL4AAIA/AACAPwDvNb6yZIE/vf/yPV67zb49PbO9SjIkPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzhnH3lCC2MAWyUTSgBjAF0lEdAktGPN3W4E3V9lChoBkdAbsE+MZP2wmgHS/5oCEdAktHANXo1UHV9lChoBkdAbzQxHoX9BWgHTR8BaAhHQJLRx5nlGPR1fZQoaAZHQG9S2Yv38GdoB00TAWgIR0CS0dGnGbTddX2UKGgGR0BxnmsA/9pAaAdNLAFoCEdAktJBX0XgtXV9lChoBkdAb/BnIQvpQmgHTQsBaAhHQJLSb9ehPCV1fZQoaAZHQHDZnl0YCQtoB00mAWgIR0CS0wSG8EmqdX2UKGgGR0BFivbGm1pkaAdLjGgIR0CS04q6e5FxdX2UKGgGR0BvvCIvalDXaAdNXgFoCEdAktQPNzKcNHV9lChoBkdAcVXfsu3+dmgHTRgBaAhHQJLUcP4EfT11fZQoaAZHQHM48/6frbBoB00IAWgIR0CS1Rf6XSjQdX2UKGgGR0BwKQtdzGPxaAdNUQFoCEdAktUc3IdU83V9lChoBkdAb/rR2r4nGGgHTQcBaAhHQJLViG21D0F1fZQoaAZHQHKHBpQDV6NoB00uAWgIR0CS1drfcer/dX2UKGgGR0BC2RXOnl4kaAdLzmgIR0CS1d/jKgZkdX2UKGgGR0BwSMIHC4z8aAdNXwFoCEdAktZZaaCtinV9lChoBkdAQFde+mFajmgHS8JoCEdAktiCIDYAbXV9lChoBkdAcWfWFvhqCmgHTQsBaAhHQJLY5nscABF1fZQoaAZHQHJAtV7x/d9oB0v7aAhHQJLZD5VOsT51fZQoaAZHQEXdWRRuTA5oB0u6aAhHQJLZz8dgfEJ1fZQoaAZHQHAwC9IwudxoB00hAWgIR0CS2f5dnkDIdX2UKGgGR0BwRVV3ljmTaAdNNwFoCEdAktoFLWZqmHV9lChoBkdAbhu+tbLU1GgHTTsBaAhHQJLaSWldkax1fZQoaAZHQHFPrEgntv5oB0voaAhHQJLabqcEvCd1fZQoaAZHQHKxNLQHAypoB01iAWgIR0CS20crAgxKdX2UKGgGR0BPGbZWaMJhaAdLv2gIR0CS21gQYk3TdX2UKGgGR0Bxuy7GvOhTaAdNOAFoCEdAktwtLxqfvnV9lChoBkdAcHUUn5SFXmgHTSwBaAhHQJLc24NI9Tx1fZQoaAZHQHGjmuHN5dJoB00/AWgIR0CS3feLNwBHdX2UKGgGR0BwcJt4zJp4aAdNPAFoCEdAkt5R91EE1XV9lChoBkdAcbXuDBdld2gHTUsBaAhHQJLevM3ZPEd1fZQoaAZHQEvlewcHWz5oB0vPaAhHQJLfrE/B3zN1fZQoaAZHQB0w3Lmp2lloB0vHaAhHQJLf9e9i+cp1fZQoaAZHQHFFQFcIJJJoB0v4aAhHQJLgJhvze411fZQoaAZHQG/0cMEzO5doB00jAWgIR0CS4OZFXq7idX2UKGgGR0BtN2r2g398aAdL+2gIR0CS4UbHp8nedX2UKGgGR0BKiHt4RmK7aAdLyWgIR0CS4VYPGyX2dX2UKGgGR0BvaMiY9gWraAdNAAFoCEdAkuL6m0mdAnV9lChoBkdAcs87r9l2/2gHTTkBaAhHQJLjLBhx5s11fZQoaAZHQHD/P2bobGZoB00xAWgIR0CS424BFNL2dX2UKGgGR0Bx+CMVDa4+aAdNcgFoCEdAkuO+3x4IKXV9lChoBkdAc3IuRLbpNmgHTSUBaAhHQJLk6lLvkR11fZQoaAZHQHCla7Ackt5oB00UAWgIR0CS5RYgJTl1dX2UKGgGR0BygCm0mdAgaAdL/mgIR0CS5cjHGS6ldX2UKGgGR0BSlYDs+mm+aAdLwWgIR0CS5nP1L8JldX2UKGgGR0Bx1D9fkWAPaAdNOgFoCEdAkvoYo3JgcHV9lChoBkdAcXZgOjIq9WgHTUQBaAhHQJL7McrAgxJ1fZQoaAZHQHEEueSSvDBoB00IAWgIR0CS++mAskIHdX2UKGgGR0BU50DZDiOvaAdL2WgIR0CS/CsU7CBPdX2UKGgGR0BxKgvqTr3TaAdNOgFoCEdAkvxpAD7qIXV9lChoBkdAbxG2pAD7qWgHTVcBaAhHQJL82gUUO/d1fZQoaAZHQHLzhUvPC2toB00VAWgIR0CS/ug2606YdX2UKGgGR0Bw++7+T/yYaAdNLAFoCEdAkv8IQOFxn3V9lChoBkdAbW+HCXQdCGgHS/doCEdAkv+Td+G47XV9lChoBkdAcjVOCGvfTGgHTagBaAhHQJL/sfgaWHF1fZQoaAZHQHALDINmUW5oB018AWgIR0CS/7BikO7QdX2UKGgGR0Bw0JdyDIzWaAdNQgFoCEdAkv/1+iJwbXV9lChoBkdAccM7CiyprGgHTRwBaAhHQJMBX6vaDf51fZQoaAZHQHIHumelKsdoB00PAWgIR0CTAn5mh/RWdX2UKGgGR0Beunvx6OYIaAdN6ANoCEdAkwK8b70nPXV9lChoBkdAcBUHGS6lL2gHTQUBaAhHQJMDN8UmD151fZQoaAZHQFTdjvNNahZoB0vpaAhHQJMDdMvh60J1fZQoaAZHQHDSCxzJZGNoB0v+aAhHQJMEeFdszl91fZQoaAZHQHIF/GyX2M9oB015AWgIR0CTBNkE9t/GdX2UKGgGR0Bydq07bL2YaAdNJAFoCEdAkwUI6jnFHnV9lChoBkdAcPKk4FRpDmgHTTIBaAhHQJMFNX5nDix1fZQoaAZHQHJRWDL8rI5oB00TAWgIR0CTBwguRLbpdX2UKGgGR0BvkxsuWa+faAdNIwFoCEdAkwew7PppvnV9lChoBkdAbnUYbbUPQWgHTQQBaAhHQJMHsRnOB191fZQoaAZHQG7cRDTjNpxoB00iAmgIR0CTCEQFLWZrdX2UKGgGR0Bx4RQXQ+lkaAdNKwFoCEdAkwiVymygPHV9lChoBkdAcOhcgyM1j2gHTSwBaAhHQJMIoUFjd591fZQoaAZHQHCOFHFxXGRoB00MAWgIR0CTCVbyH2ytdX2UKGgGR0BLGhEa2nbZaAdLsGgIR0CTCfnQID5kdX2UKGgGR0BvPFxZMcp9aAdNEwFoCEdAkwp6asp5NXV9lChoBkdAcrFreqJdjWgHTREBaAhHQJMKotvn8sN1fZQoaAZHQHK6yFbmlqJoB00WAWgIR0CTCzFhoduHdX2UKGgGR0BygWzWwu/UaAdNAgFoCEdAkwxJfMOf/XV9lChoBkdAcyVWjoIOY2gHTUEBaAhHQJMMk5wOvuB1fZQoaAZHQHMPQ97ngYRoB009AWgIR0CTDX1pj+aSdX2UKGgGR0BUngr6LwWnaAdLvWgIR0CTDpFocrAhdX2UKGgGR0BzbsidJ8OTaAdNUwFoCEdAkw7pSm65G3V9lChoBkdAcSlBH09QoGgHTQ4BaAhHQJMPUvpQk5Z1fZQoaAZHQFNW48U21lZoB0umaAhHQJMPZhqj8DV1fZQoaAZHQG99rwe/5+JoB00sAWgIR0CTD6Il+mWMdX2UKGgGR0Bw7Vu89Oh1aAdNBQFoCEdAkw+gsGxD9nV9lChoBkdAcF8VpKzzE2gHTR4BaAhHQJMPyH446wN1fZQoaAZHQHGIyLdepn9oB00UAWgIR0CTEEpztCzDdX2UKGgGR0Bw+not+TePaAdNIQFoCEdAkxCS+De0onV9lChoBkdAcq0/dIoVmGgHTRUBaAhHQJMRsGbCrLh1fZQoaAZHQHJD6OtGNJhoB02SAmgIR0CTEm0cwQDndX2UKGgGR0Bx2yYIBzV+aAdL/2gIR0CTE5iblRxcdX2UKGgGR0BxiVbcGkeqaAdL+GgIR0CTFKy+Yc//dX2UKGgGR0BwfF0PpY9xaAdNUgFoCEdAkxTyzXz19XV9lChoBkdAcBgNSIgvDmgHTSIBaAhHQJMVD6sQumJ1fZQoaAZHQG/bSvC/Gl1oB015AWgIR0CTFUGY8dPtdX2UKGgGR0Bz3Gjh1klNaAdL6WgIR0CTFY+b3Gn5dX2UKGgGR0BzWKBg/keZaAdL+GgIR0CTFlzMA3kxdX2UKGgGR0BwL2+oLofTaAdNMAFoCEdAkxczXarWAnV9lChoBkdAcF9SPU8V6GgHTR0BaAhHQJMXVaNdZ7p1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b2b593b8016f26fbe3c4cd87025d26d8f2a90d1e956d00959fde084990251f8
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66b35db4692b4945f9321db28d1420b80621c6b6a6f05eecec363c3f59363b9c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (155 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 266.2865642, "std_reward": 22.49768440159421, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-15T10:47:13.156506"}
|