Upload PPO BipedalWalker-v3 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_bipedalwalker_v3.zip +3 -0
- ppo_bipedalwalker_v3/_stable_baselines3_version +1 -0
- ppo_bipedalwalker_v3/data +105 -0
- ppo_bipedalwalker_v3/policy.optimizer.pth +3 -0
- ppo_bipedalwalker_v3/policy.pth +3 -0
- ppo_bipedalwalker_v3/pytorch_variables.pth +3 -0
- ppo_bipedalwalker_v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalker-v3
|
16 |
+
type: BipedalWalker-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 224.54 +/- 15.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dc745292b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dc745292c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dc745292cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dc745292d40>", "_build": "<function ActorCriticPolicy._build at 0x7dc745292dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7dc745292e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dc745292ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dc745292f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7dc745293010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dc7452930a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dc745293130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dc7452931c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dc745237400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713178976656177352, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAABQ8Kr72IW68wOk2Pi82Gj6+jEK/vqmIvgpWbz8AAAAAAAAAADpEkT8A4CU3aItpP1fAY74AAAAA+PKtPvtcrD4TILI+lSO7PmVpxT5dVNk+SDf4PiSKEz+TEkY/AACAPxUi5T6u8Mi9gjOpPmSGBbyOmlC/AP7cOoBqGLxNA/s+AACAPwFUez+wbZa95F9UP7n+f78AAAAA+72VPlJxlz5vpJw+4KqlPmfMsz5R0sk+DXHvPrJuEz/1BkI/AACAPwWZAz82YoA9t4+VPvPuzbyiIPS+46WAv8pmDr+f088+AACAP1xEkT8AADa46P66PjwvQr8AAAAAxRePPgzijz53PJU+kLOfPm1Xrj54k8U+p7TsPlUUFT9m/Gg/AACAP2HEtj3cE4M800/BOw+sJb6+CJg9LMnSvkiJIr/Y3fE9AAAAAOGdGT+BWJm+oIHGvgIAgD8AAAAA+nfKPpvEzD4179M+ftrgPhlR9T5pWwo/uNsiPwF1Sz8AAIA/AACAP+j6tT5KD7K9/LGTPhNTlrx/vFW/AAAAAMiRED4vzOw+AACAP74LiD+MVlW/QOwkP///fz8AAAAARbKTPijwkz5R7Zc+SqGhPuV9sT7YXss+OOP2PmS0Gz/wRFk/AACAP99XLD+NO4M9Ok18PkXRp7xAHuu+AQCAv3Ce/b6tz6Q+AACAP2o2jD83mE6+0Kv7PgEAgD8AAAAAAnOdPvJPnD656Z0+e2CiPr5qqj7lk7c+iM/NPoBw9D7lyyI/AACAPwSU7D5j8os9qqWfPuRkpb1OtvS+lPyGvyrLAr9nLWc+AAAAAA6riT/h8By/OJj7PghBST8AAAAA1b6SPqBClz5F06A+3J+wPsVWxz7cneI+pVgHPwy3Jj8cUFo/AACAP/+WCD9qmIS90WxuPnqzXz0rOVK/AECJN9C5KL4pUdQ+AAAAAKzhiz9kOQe/FFZvPwAAAAAAAAAA79qKPgZNiT503Yo+b9GOPk9hlj5bhqY+t/rBPgXn8T4kzyg/AACAP9/MqT5caFw9Uv/oPQ9Nq72/0xy9AwCAP8DpGr8BAIC/AAAAAD1IjT8AAAAAVK+vvvX/fz8AAAAAdlekPg1WpT5OCao+8/qyPr+7wj7ydNs+BLIAP5bVHT8bwE8/AACAP6q7qj7c2dg9XT4JPpaErL1ku7K9P0ZevxYqJr+PsAi/AACAPwQOiT/QNtS90AxePiWd9T0AAAAAIt6jPqoopz79W64+78q8Pnc50T53Ouw+hBILP4mzKD/jE1k/AACAP4KYwz6aRz093BJUPsFa2b2rGwy90UPPvoahFr/7/38/AAAAAK40aD/8/38/iC9LvgEAgL8AAIA/9lGwPvjorj4s4rE+F9K5Ppgeyj7U7OA+PXkBP3lmHT/Ip1o/AACAP1sZkz5O/S89TvnMPrwTN74zAIy+pot/vxCHF7/LIDU9AACAPxuilD8iiGM/cEfgvvIBgL8AAIA/z5WQPqwdkz7j1Jk+QlCkPl/psz7ba8s+NkjrPisZET8BhD0/AACAP4P//z6IO5M9S95xPtYeb71GCve+AACAv9Cbwb693ZM+AACAP6rLjz8AAAAAKLHtPo1aXL8AAAAAcHmbPvwqnD5jOqE+ntmqPgdUuj4WQtQ+kG8BP4JUJj954Ws/AACAP+go5D5M8qe9JQKaPhOHwTwphFS/ALC3ObAb8L2PePI+AAAAAMu6kD8AAG235NM0P00FgL8AAAAA/1iMPnBDjj7t6ZI+sGibPiNYpj7j+Lc+oS3VPk+AAz9j8zY/AACAP2dTIT8qT7A9BQxjPuWfdb0Ha4m+AACAv24qGL9pqQg+AACAPwA2jT/yeb6+sJw1PwAAgD8AAAAAeuOePvg7nT79aZ4+JYujPu9/rT6FKMA+RwjfPkBECz/USUQ/AACAP8mIOL6zGb686pIGPhqlvD2Wahq/8v9/P8FeLT8BAIC/AAAAAICRjT/1Tyo/BzpnPyi7b78AAIA/qsyaPistnT4igqU+mRmyPiLAwz7fluA+hRUHP+hWLj+ggGw/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFa7pd8iOeeMAWyUTUAGjAF0lEdAiX9oexOclXV9lChoBkdAXyxhuwX67GgHTUAGaAhHQImGbf3vhIh1fZQoaAZHQF/4jslb/wRoB01ABmgIR0CJi/rgOz6adX2UKGgGR8BYvfR7Z39raAdLaGgIR0CJjuyQgcLjdX2UKGgGR0BdTncHnlnzaAdNQAZoCEdAicqRvWH1vnV9lChoBkdAXkJhttQ9BGgHTUAGaAhHQInMUPH1e0J1fZQoaAZHwFF6T7l7tzFoB027AmgIR0CJ0L642CNCdX2UKGgGR0Bd4DLbHp8naAdNQAZoCEdAidS6Ww/xD3V9lChoBkdAWRJTHbRF7WgHTUAGaAhHQInY+1UlzEJ1fZQoaAZHQGEuwEZBLPFoB01ABmgIR0CJ2j0Yj0L/dX2UKGgGR0BfKbMxGlQ/aAdNQAZoCEdAid4q6nR9gHV9lChoBkdAXwtK/VRUFWgHTUAGaAhHQInemH31zyV1fZQoaAZHwEUMTSsr/bVoB00FA2gIR0CJ3paIvalDdX2UKGgGR8BZQTbSJCSiaAdLdGgIR0CJ5MT101ZUdX2UKGgGR0Bc8xy8zyjIaAdNQAZoCEdAieZ4AsCkoHV9lChoBkdAWJx4wAU+LWgHTUAGaAhHQIntLG96C191fZQoaAZHQFe4t5le4TdoB01ABmgIR0CJ8SVRDTjOdX2UKGgGR8BZWxaC+UQkaAdLaGgIR0CKHXl6JIlMdX2UKGgGRz/orXL/0dzXaAdNggVoCEdAih8V8Ti84HV9lChoBkdAW2EahpQDWGgHTUAGaAhHQIoi9uR9w3p1fZQoaAZHQFhiNmDlHSZoB01ABmgIR0CKJARf4REndX2UKGgGR0BeK0c4o7V8aAdNQAZoCEdAijjADA8B/HV9lChoBkfAPyuLNwBHTmgHTcgEaAhHQIo+D7wazeJ1fZQoaAZHwFNJCI1tO21oB01CAWgIR0CKSYK3uuzQdX2UKGgGR0BbvgDFId2gaAdNQAZoCEdAiku1G0/nn3V9lChoBkdAWxCl0o0ALmgHTUAGaAhHQIpNXNu+AVh1fZQoaAZHwF0qGcWj459oB0tCaAhHQIpPMCJXQt11fZQoaAZHQFwGWiUPhAJoB01ABmgIR0CKgNNPgvUSdX2UKGgGR0BYzEY8+zMSaAdNQAZoCEdAioUi9AX2unV9lChoBkdAX2XqkdmxuGgHTUAGaAhHQIqGW74BV+91fZQoaAZHQF/dzpX6qKhoB01ABmgIR0CKilEMLF4tdX2UKGgGR0Bdx2ois4kvaAdNQAZoCEdAioq+BQN1AHV9lChoBkfAXLhFlTWGy2gHS0toCEdAio5jRlYlp3V9lChoBkdAXN6AEt/WlWgHTUAGaAhHQIqRCEcsDnx1fZQoaAZHQFeGx5LRKHxoB01ABmgIR0CKkt9iMHbAdX2UKGgGR0BcHAy6+WWyaAdNQAZoCEdAips2Op84P3V9lChoBkdAXsNGnXNC7mgHTUAGaAhHQIqeMBdUsFt1fZQoaAZHQFnFVN5+pfhoB01ABmgIR0CKn67Sy+pPdX2UKGgGR0BdjbHAAQxvaAdNQAZoCEdAiqO2SlnAZnV9lChoBkdAXqHytmtheGgHTUAGaAhHQIqkvjn3cpN1fZQoaAZHwFiuLDhtLthoB0toaAhHQIqqTIgeRxN1fZQoaAZHwFQO/lQuVX5oB02AAWgIR0CKsvNwBHTadX2UKGgGR0AgwV8kUsWgaAdNGwZoCEdAiupNSAH3UXV9lChoBkdAXFBxMnJDE2gHTUAGaAhHQIr4d+Zw4sF1fZQoaAZHQF+4a7VawEBoB01ABmgIR0CK/G+dsi0OdX2UKGgGR0Be+BoysS00aAdNQAZoCEdAiv5whGH58HV9lChoBkdAXh1TtLL6lGgHTUAGaAhHQIsFFyLhrFh1fZQoaAZHwDju3ocJdB1oB007BGgIR0CLB/rCWNWEdX2UKGgGR0BgUsrXlKbsaAdNQAZoCEdAiwlypJf6XXV9lChoBkdAXLg+LWI42mgHTUAGaAhHQIsKodU83dd1fZQoaAZHQF6yObiIcipoB01ABmgIR0CLDufAbhm5dX2UKGgGR0BeqD8xbjcVaAdNQAZoCEdAixJeHi3ocXV9lChoBkdAXT3hLoOhCmgHTUAGaAhHQIsU3mT1TR91fZQoaAZHQFyYRaHKwINoB01ABmgIR0CLFpsFdLQHdX2UKGgGR0BgpMpXp4bCaAdNQAZoCEdAi0nCKBNEgHV9lChoBkdAW+MfwI+nqGgHTUAGaAhHQItSILXtjTd1fZQoaAZHQFsWIN3GGVRoB01ABmgIR0CLWNtj0+TvdX2UKGgGR0BVUem3vx6OaAdNQAZoCEdAi2FdAX2ugnV9lChoBkfARz0lqrR0EGgHTc4DaAhHQItkB66asp51fZQoaAZHQFxbnlGPPs1oB01ABmgIR0CLa3M6ij+KdX2UKGgGR8A44/cFhXr/aAdNAQVoCEdAi23pJwsGxHV9lChoBkdAYH0h6By0bGgHTUAGaAhHQIt5Gh24d6t1fZQoaAZHQGEZKs+3YthoB01ABmgIR0CLqDOfukULdX2UKGgGR0BYeWEwnH/+aAdNQAZoCEdAi7Ne8XenAXV9lChoBkdAXI4oRZlnRWgHTUAGaAhHQIu00WTHKfZ1fZQoaAZHQFhF09hZyMloB01ABmgIR0CLtkLVnVXndX2UKGgGR8Be8/EjxCpnaAdLUGgIR0CLt9QwblzVdX2UKGgGR0BcZx8+iaiLaAdNQAZoCEdAi7py3b212XV9lChoBkdAYMugeRxLkGgHTUAGaAhHQIu+L6vaDf51fZQoaAZHQGAJ72L5ylxoB01ABmgIR0CLwKSEDhcadX2UKGgGR0BgDXhwVCXyaAdNQAZoCEdAi8JDMNc4YXV9lChoBkdAYb67EHdGiGgHTUAGaAhHQIvKPqZ+hGp1fZQoaAZHwFsRfapPykNoB0tOaAhHQIvOf5zo2XN1fZQoaAZHwD0sFyJbdJtoB00RA2gIR0CL0a5p8F6idX2UKGgGR0BeA9PtUn5SaAdNQAZoCEdAi9KEkrwvx3V9lChoBkdAYKnHMlkYoGgHTUAGaAhHQIvZE0aZQYV1fZQoaAZHwEzNFVDKHO9oB009AmgIR0CL3BUpd8iOdX2UKGgGR8BUTBXwLE1maAdL5mgIR0CMCizbeuV5dX2UKGgGR0Bi5Iqqfe1saAdNQAZoCEdAjAzzyrgfl3V9lChoBkdAYMOdsi0OVmgHTUAGaAhHQIwPleBxxT91fZQoaAZHQGEjxGMGX5ZoB01ABmgIR0CMFuxcE/0NdX2UKGgGR0BgHh8jRlYmaAdNQAZoCEdAjBl371qWT3V9lChoBkfAR2yvcJtzjmgHTVYCaAhHQIwZvMlkYoB1fZQoaAZHQGC+l41P3ztoB01ABmgIR0CMJHN+LFXJdX2UKGgGR0BhwVzltCRfaAdNQAZoCEdAjDRuuq3mWHV9lChoBkdAYQzmOEM9bGgHTUAGaAhHQIw1rg/C66J1fZQoaAZHQGAOS26TW5JoB01ABmgIR0CMN1CxeLNwdX2UKGgGR0Bf3uP3i704aAdNQAZoCEdAjDofDLr5ZnV9lChoBkdAXAWpDNQj2WgHTUAGaAhHQIxrs/+sHSp1fZQoaAZHQGRdwFLWZqpoB01ABmgIR0CMbXnctXgcdX2UKGgGR0BhTnFglWwNaAdNQAZoCEdAjH07aqS5iHV9lChoBkc/r/LDAJswc2gHTQwFaAhHQIx/dTUAks11fZQoaAZHQGCU5AY51eVoB01ABmgIR0CMhK9Oh0yQdX2UKGgGR0BiQ/ied07saAdNQAZoCEdAjIfLRa5f+nV9lChoBkdAYAD6NVBD5WgHTUAGaAhHQIyKSn752yN1fZQoaAZHQGFcMByS3b5oB01ABmgIR0CMjRKZlWfcdX2UKGgGR0AzT+zMRpUQaAdNlAVoCEdAjJBXtrsSkHV9lChoBkfAHOpCa7VawGgHTZ4FaAhHQIyRDSofjjt1fZQoaAZHQF7odAPd2xJoB01ABmgIR0CMlvxiG34LdX2UKGgGRz/SJ/XoTwlTaAdNSARoCEdAjJ/Ls8gZCXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo_bipedalwalker_v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b1a8b20aec29253dd6a102da8e2b6d758b55fbb5665a24c585556ec4ef03e6a
|
3 |
+
size 176514
|
ppo_bipedalwalker_v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo_bipedalwalker_v3/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dc745292b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dc745292c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dc745292cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dc745292d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dc745292dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dc745292e60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dc745292ef0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dc745292f80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dc745293010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dc7452930a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dc745293130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dc7452931c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dc745237400>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1713178976656177352,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAABQ8Kr72IW68wOk2Pi82Gj6+jEK/vqmIvgpWbz8AAAAAAAAAADpEkT8A4CU3aItpP1fAY74AAAAA+PKtPvtcrD4TILI+lSO7PmVpxT5dVNk+SDf4PiSKEz+TEkY/AACAPxUi5T6u8Mi9gjOpPmSGBbyOmlC/AP7cOoBqGLxNA/s+AACAPwFUez+wbZa95F9UP7n+f78AAAAA+72VPlJxlz5vpJw+4KqlPmfMsz5R0sk+DXHvPrJuEz/1BkI/AACAPwWZAz82YoA9t4+VPvPuzbyiIPS+46WAv8pmDr+f088+AACAP1xEkT8AADa46P66PjwvQr8AAAAAxRePPgzijz53PJU+kLOfPm1Xrj54k8U+p7TsPlUUFT9m/Gg/AACAP2HEtj3cE4M800/BOw+sJb6+CJg9LMnSvkiJIr/Y3fE9AAAAAOGdGT+BWJm+oIHGvgIAgD8AAAAA+nfKPpvEzD4179M+ftrgPhlR9T5pWwo/uNsiPwF1Sz8AAIA/AACAP+j6tT5KD7K9/LGTPhNTlrx/vFW/AAAAAMiRED4vzOw+AACAP74LiD+MVlW/QOwkP///fz8AAAAARbKTPijwkz5R7Zc+SqGhPuV9sT7YXss+OOP2PmS0Gz/wRFk/AACAP99XLD+NO4M9Ok18PkXRp7xAHuu+AQCAv3Ce/b6tz6Q+AACAP2o2jD83mE6+0Kv7PgEAgD8AAAAAAnOdPvJPnD656Z0+e2CiPr5qqj7lk7c+iM/NPoBw9D7lyyI/AACAPwSU7D5j8os9qqWfPuRkpb1OtvS+lPyGvyrLAr9nLWc+AAAAAA6riT/h8By/OJj7PghBST8AAAAA1b6SPqBClz5F06A+3J+wPsVWxz7cneI+pVgHPwy3Jj8cUFo/AACAP/+WCD9qmIS90WxuPnqzXz0rOVK/AECJN9C5KL4pUdQ+AAAAAKzhiz9kOQe/FFZvPwAAAAAAAAAA79qKPgZNiT503Yo+b9GOPk9hlj5bhqY+t/rBPgXn8T4kzyg/AACAP9/MqT5caFw9Uv/oPQ9Nq72/0xy9AwCAP8DpGr8BAIC/AAAAAD1IjT8AAAAAVK+vvvX/fz8AAAAAdlekPg1WpT5OCao+8/qyPr+7wj7ydNs+BLIAP5bVHT8bwE8/AACAP6q7qj7c2dg9XT4JPpaErL1ku7K9P0ZevxYqJr+PsAi/AACAPwQOiT/QNtS90AxePiWd9T0AAAAAIt6jPqoopz79W64+78q8Pnc50T53Ouw+hBILP4mzKD/jE1k/AACAP4KYwz6aRz093BJUPsFa2b2rGwy90UPPvoahFr/7/38/AAAAAK40aD/8/38/iC9LvgEAgL8AAIA/9lGwPvjorj4s4rE+F9K5Ppgeyj7U7OA+PXkBP3lmHT/Ip1o/AACAP1sZkz5O/S89TvnMPrwTN74zAIy+pot/vxCHF7/LIDU9AACAPxuilD8iiGM/cEfgvvIBgL8AAIA/z5WQPqwdkz7j1Jk+QlCkPl/psz7ba8s+NkjrPisZET8BhD0/AACAP4P//z6IO5M9S95xPtYeb71GCve+AACAv9Cbwb693ZM+AACAP6rLjz8AAAAAKLHtPo1aXL8AAAAAcHmbPvwqnD5jOqE+ntmqPgdUuj4WQtQ+kG8BP4JUJj954Ws/AACAP+go5D5M8qe9JQKaPhOHwTwphFS/ALC3ObAb8L2PePI+AAAAAMu6kD8AAG235NM0P00FgL8AAAAA/1iMPnBDjj7t6ZI+sGibPiNYpj7j+Lc+oS3VPk+AAz9j8zY/AACAP2dTIT8qT7A9BQxjPuWfdb0Ha4m+AACAv24qGL9pqQg+AACAPwA2jT/yeb6+sJw1PwAAgD8AAAAAeuOePvg7nT79aZ4+JYujPu9/rT6FKMA+RwjfPkBECz/USUQ/AACAP8mIOL6zGb686pIGPhqlvD2Wahq/8v9/P8FeLT8BAIC/AAAAAICRjT/1Tyo/BzpnPyi7b78AAIA/qsyaPistnT4igqU+mRmyPiLAwz7fluA+hRUHP+hWLj+ggGw/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFa7pd8iOeeMAWyUTUAGjAF0lEdAiX9oexOclXV9lChoBkdAXyxhuwX67GgHTUAGaAhHQImGbf3vhIh1fZQoaAZHQF/4jslb/wRoB01ABmgIR0CJi/rgOz6adX2UKGgGR8BYvfR7Z39raAdLaGgIR0CJjuyQgcLjdX2UKGgGR0BdTncHnlnzaAdNQAZoCEdAicqRvWH1vnV9lChoBkdAXkJhttQ9BGgHTUAGaAhHQInMUPH1e0J1fZQoaAZHwFF6T7l7tzFoB027AmgIR0CJ0L642CNCdX2UKGgGR0Bd4DLbHp8naAdNQAZoCEdAidS6Ww/xD3V9lChoBkdAWRJTHbRF7WgHTUAGaAhHQInY+1UlzEJ1fZQoaAZHQGEuwEZBLPFoB01ABmgIR0CJ2j0Yj0L/dX2UKGgGR0BfKbMxGlQ/aAdNQAZoCEdAid4q6nR9gHV9lChoBkdAXwtK/VRUFWgHTUAGaAhHQInemH31zyV1fZQoaAZHwEUMTSsr/bVoB00FA2gIR0CJ3paIvalDdX2UKGgGR8BZQTbSJCSiaAdLdGgIR0CJ5MT101ZUdX2UKGgGR0Bc8xy8zyjIaAdNQAZoCEdAieZ4AsCkoHV9lChoBkdAWJx4wAU+LWgHTUAGaAhHQIntLG96C191fZQoaAZHQFe4t5le4TdoB01ABmgIR0CJ8SVRDTjOdX2UKGgGR8BZWxaC+UQkaAdLaGgIR0CKHXl6JIlMdX2UKGgGRz/orXL/0dzXaAdNggVoCEdAih8V8Ti84HV9lChoBkdAW2EahpQDWGgHTUAGaAhHQIoi9uR9w3p1fZQoaAZHQFhiNmDlHSZoB01ABmgIR0CKJARf4REndX2UKGgGR0BeK0c4o7V8aAdNQAZoCEdAijjADA8B/HV9lChoBkfAPyuLNwBHTmgHTcgEaAhHQIo+D7wazeJ1fZQoaAZHwFNJCI1tO21oB01CAWgIR0CKSYK3uuzQdX2UKGgGR0BbvgDFId2gaAdNQAZoCEdAiku1G0/nn3V9lChoBkdAWxCl0o0ALmgHTUAGaAhHQIpNXNu+AVh1fZQoaAZHwF0qGcWj459oB0tCaAhHQIpPMCJXQt11fZQoaAZHQFwGWiUPhAJoB01ABmgIR0CKgNNPgvUSdX2UKGgGR0BYzEY8+zMSaAdNQAZoCEdAioUi9AX2unV9lChoBkdAX2XqkdmxuGgHTUAGaAhHQIqGW74BV+91fZQoaAZHQF/dzpX6qKhoB01ABmgIR0CKilEMLF4tdX2UKGgGR0Bdx2ois4kvaAdNQAZoCEdAioq+BQN1AHV9lChoBkfAXLhFlTWGy2gHS0toCEdAio5jRlYlp3V9lChoBkdAXN6AEt/WlWgHTUAGaAhHQIqRCEcsDnx1fZQoaAZHQFeGx5LRKHxoB01ABmgIR0CKkt9iMHbAdX2UKGgGR0BcHAy6+WWyaAdNQAZoCEdAips2Op84P3V9lChoBkdAXsNGnXNC7mgHTUAGaAhHQIqeMBdUsFt1fZQoaAZHQFnFVN5+pfhoB01ABmgIR0CKn67Sy+pPdX2UKGgGR0BdjbHAAQxvaAdNQAZoCEdAiqO2SlnAZnV9lChoBkdAXqHytmtheGgHTUAGaAhHQIqkvjn3cpN1fZQoaAZHwFiuLDhtLthoB0toaAhHQIqqTIgeRxN1fZQoaAZHwFQO/lQuVX5oB02AAWgIR0CKsvNwBHTadX2UKGgGR0AgwV8kUsWgaAdNGwZoCEdAiupNSAH3UXV9lChoBkdAXFBxMnJDE2gHTUAGaAhHQIr4d+Zw4sF1fZQoaAZHQF+4a7VawEBoB01ABmgIR0CK/G+dsi0OdX2UKGgGR0Be+BoysS00aAdNQAZoCEdAiv5whGH58HV9lChoBkdAXh1TtLL6lGgHTUAGaAhHQIsFFyLhrFh1fZQoaAZHwDju3ocJdB1oB007BGgIR0CLB/rCWNWEdX2UKGgGR0BgUsrXlKbsaAdNQAZoCEdAiwlypJf6XXV9lChoBkdAXLg+LWI42mgHTUAGaAhHQIsKodU83dd1fZQoaAZHQF6yObiIcipoB01ABmgIR0CLDufAbhm5dX2UKGgGR0BeqD8xbjcVaAdNQAZoCEdAixJeHi3ocXV9lChoBkdAXT3hLoOhCmgHTUAGaAhHQIsU3mT1TR91fZQoaAZHQFyYRaHKwINoB01ABmgIR0CLFpsFdLQHdX2UKGgGR0BgpMpXp4bCaAdNQAZoCEdAi0nCKBNEgHV9lChoBkdAW+MfwI+nqGgHTUAGaAhHQItSILXtjTd1fZQoaAZHQFsWIN3GGVRoB01ABmgIR0CLWNtj0+TvdX2UKGgGR0BVUem3vx6OaAdNQAZoCEdAi2FdAX2ugnV9lChoBkfARz0lqrR0EGgHTc4DaAhHQItkB66asp51fZQoaAZHQFxbnlGPPs1oB01ABmgIR0CLa3M6ij+KdX2UKGgGR8A44/cFhXr/aAdNAQVoCEdAi23pJwsGxHV9lChoBkdAYH0h6By0bGgHTUAGaAhHQIt5Gh24d6t1fZQoaAZHQGEZKs+3YthoB01ABmgIR0CLqDOfukULdX2UKGgGR0BYeWEwnH/+aAdNQAZoCEdAi7Ne8XenAXV9lChoBkdAXI4oRZlnRWgHTUAGaAhHQIu00WTHKfZ1fZQoaAZHQFhF09hZyMloB01ABmgIR0CLtkLVnVXndX2UKGgGR8Be8/EjxCpnaAdLUGgIR0CLt9QwblzVdX2UKGgGR0BcZx8+iaiLaAdNQAZoCEdAi7py3b212XV9lChoBkdAYMugeRxLkGgHTUAGaAhHQIu+L6vaDf51fZQoaAZHQGAJ72L5ylxoB01ABmgIR0CLwKSEDhcadX2UKGgGR0BgDXhwVCXyaAdNQAZoCEdAi8JDMNc4YXV9lChoBkdAYb67EHdGiGgHTUAGaAhHQIvKPqZ+hGp1fZQoaAZHwFsRfapPykNoB0tOaAhHQIvOf5zo2XN1fZQoaAZHwD0sFyJbdJtoB00RA2gIR0CL0a5p8F6idX2UKGgGR0BeA9PtUn5SaAdNQAZoCEdAi9KEkrwvx3V9lChoBkdAYKnHMlkYoGgHTUAGaAhHQIvZE0aZQYV1fZQoaAZHwEzNFVDKHO9oB009AmgIR0CL3BUpd8iOdX2UKGgGR8BUTBXwLE1maAdL5mgIR0CMCizbeuV5dX2UKGgGR0Bi5Iqqfe1saAdNQAZoCEdAjAzzyrgfl3V9lChoBkdAYMOdsi0OVmgHTUAGaAhHQIwPleBxxT91fZQoaAZHQGEjxGMGX5ZoB01ABmgIR0CMFuxcE/0NdX2UKGgGR0BgHh8jRlYmaAdNQAZoCEdAjBl371qWT3V9lChoBkfAR2yvcJtzjmgHTVYCaAhHQIwZvMlkYoB1fZQoaAZHQGC+l41P3ztoB01ABmgIR0CMJHN+LFXJdX2UKGgGR0BhwVzltCRfaAdNQAZoCEdAjDRuuq3mWHV9lChoBkdAYQzmOEM9bGgHTUAGaAhHQIw1rg/C66J1fZQoaAZHQGAOS26TW5JoB01ABmgIR0CMN1CxeLNwdX2UKGgGR0Bf3uP3i704aAdNQAZoCEdAjDofDLr5ZnV9lChoBkdAXAWpDNQj2WgHTUAGaAhHQIxrs/+sHSp1fZQoaAZHQGRdwFLWZqpoB01ABmgIR0CMbXnctXgcdX2UKGgGR0BhTnFglWwNaAdNQAZoCEdAjH07aqS5iHV9lChoBkc/r/LDAJswc2gHTQwFaAhHQIx/dTUAks11fZQoaAZHQGCU5AY51eVoB01ABmgIR0CMhK9Oh0yQdX2UKGgGR0BiQ/ied07saAdNQAZoCEdAjIfLRa5f+nV9lChoBkdAYAD6NVBD5WgHTUAGaAhHQIyKSn752yN1fZQoaAZHQGFcMByS3b5oB01ABmgIR0CMjRKZlWfcdX2UKGgGR0AzT+zMRpUQaAdNlAVoCEdAjJBXtrsSkHV9lChoBkfAHOpCa7VawGgHTZ4FaAhHQIyRDSofjjt1fZQoaAZHQF7odAPd2xJoB01ABmgIR0CMlvxiG34LdX2UKGgGRz/SJ/XoTwlTaAdNSARoCEdAjJ/Ls8gZCXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
24
|
63 |
+
],
|
64 |
+
"low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
65 |
+
"high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
66 |
+
"low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
67 |
+
"high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True]",
|
75 |
+
"bounded_above": "[ True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
4
|
78 |
+
],
|
79 |
+
"low": "[-1. -1. -1. -1.]",
|
80 |
+
"high": "[1. 1. 1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo_bipedalwalker_v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b50a90d171f114d270fbebc16078c5db7d3774a3667ce1052efa12c8a5271e
|
3 |
+
size 105121
|
ppo_bipedalwalker_v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a38f236e43a9df500a9d10b7e284c031d05088eb95ce97cfb626c8babc9f47e9
|
3 |
+
size 52143
|
ppo_bipedalwalker_v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo_bipedalwalker_v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (334 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 224.5402237, "std_reward": 15.259468605911449, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-15T11:17:28.933632"}
|