--- language: en tags: - phi-2 - openassistant - conversational license: mit --- # Phi-2 Fine-tuned on OpenAssistant This model is a fine-tuned version of Microsoft's Phi-2 model, trained on the OpenAssistant dataset using QLoRA techniques. ## Model Description - **Base Model:** Microsoft Phi-2 - **Training Data:** OpenAssistant Conversations Dataset - **Training Method:** QLoRA (Quantized Low-Rank Adaptation) - **Use Case:** Conversational AI and text generation ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-username/phi2-finetuned-openassistant") tokenizer = AutoTokenizer.from_pretrained("your-username/phi2-finetuned-openassistant") # Generate text input_text = "Hello, how are you?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## Training Details - Fine-tuned for 1 epoch - Used 4-bit quantization for efficient training - Implemented gradient checkpointing and mixed precision training ## Limitations - The model inherits limitations from both Phi-2 and the OpenAssistant dataset - May produce incorrect or biased information - Should be used with appropriate content filtering and moderation ## License This model is released under the MIT License.