Update README.md (#1)
Browse files- Update README.md (93fb594f124114281a6e5f8a1b6111efa52b0cb3)
README.md
CHANGED
|
@@ -174,7 +174,7 @@ model-index:
|
|
| 174 |
value: 0.14 [0.14, 0.15]
|
| 175 |
name: IQM expert normalized total reward
|
| 176 |
- type: iqm_human_normalized_total_reward
|
| 177 |
-
value: 0.38 [0.37, 0.
|
| 178 |
name: IQM human normalized total reward
|
| 179 |
- task:
|
| 180 |
type: reinforcement-learning
|
|
@@ -194,7 +194,7 @@ model-index:
|
|
| 194 |
type: metaworld
|
| 195 |
metrics:
|
| 196 |
- type: iqm_expert_normalized_total_reward
|
| 197 |
-
value: 0.
|
| 198 |
name: IQM expert normalized total reward
|
| 199 |
- task:
|
| 200 |
type: reinforcement-learning
|
|
@@ -204,7 +204,7 @@ model-index:
|
|
| 204 |
type: mujoco
|
| 205 |
metrics:
|
| 206 |
- type: iqm_expert_normalized_total_reward
|
| 207 |
-
value: 0.
|
| 208 |
name: IQM expert normalized total reward
|
| 209 |
- task:
|
| 210 |
type: reinforcement-learning
|
|
@@ -214,13 +214,13 @@ model-index:
|
|
| 214 |
type: atari-alien
|
| 215 |
metrics:
|
| 216 |
- type: total_reward
|
| 217 |
-
value:
|
| 218 |
name: Total reward
|
| 219 |
- type: expert_normalized_total_reward
|
| 220 |
-
value: 0.
|
| 221 |
name: Expert normalized total reward
|
| 222 |
- type: human_normalized_total_reward
|
| 223 |
-
value: 0.
|
| 224 |
name: Human normalized total reward
|
| 225 |
- task:
|
| 226 |
type: reinforcement-learning
|
|
@@ -230,13 +230,13 @@ model-index:
|
|
| 230 |
type: atari-amidar
|
| 231 |
metrics:
|
| 232 |
- type: total_reward
|
| 233 |
-
value:
|
| 234 |
name: Total reward
|
| 235 |
- type: expert_normalized_total_reward
|
| 236 |
-
value: 0.
|
| 237 |
name: Expert normalized total reward
|
| 238 |
- type: human_normalized_total_reward
|
| 239 |
-
value: 0.
|
| 240 |
name: Human normalized total reward
|
| 241 |
- task:
|
| 242 |
type: reinforcement-learning
|
|
@@ -246,13 +246,13 @@ model-index:
|
|
| 246 |
type: atari-assault
|
| 247 |
metrics:
|
| 248 |
- type: total_reward
|
| 249 |
-
value:
|
| 250 |
name: Total reward
|
| 251 |
- type: expert_normalized_total_reward
|
| 252 |
value: 0.09 +/- 0.05
|
| 253 |
name: Expert normalized total reward
|
| 254 |
- type: human_normalized_total_reward
|
| 255 |
-
value: 2.
|
| 256 |
name: Human normalized total reward
|
| 257 |
- task:
|
| 258 |
type: reinforcement-learning
|
|
@@ -262,13 +262,13 @@ model-index:
|
|
| 262 |
type: atari-asterix
|
| 263 |
metrics:
|
| 264 |
- type: total_reward
|
| 265 |
-
value:
|
| 266 |
name: Total reward
|
| 267 |
- type: expert_normalized_total_reward
|
| 268 |
-
value: 0.
|
| 269 |
name: Expert normalized total reward
|
| 270 |
- type: human_normalized_total_reward
|
| 271 |
-
value: 0.
|
| 272 |
name: Human normalized total reward
|
| 273 |
- task:
|
| 274 |
type: reinforcement-learning
|
|
@@ -278,7 +278,7 @@ model-index:
|
|
| 278 |
type: atari-asteroids
|
| 279 |
metrics:
|
| 280 |
- type: total_reward
|
| 281 |
-
value:
|
| 282 |
name: Total reward
|
| 283 |
- type: expert_normalized_total_reward
|
| 284 |
value: 0.00 +/- 0.00
|
|
@@ -294,13 +294,13 @@ model-index:
|
|
| 294 |
type: atari-atlantis
|
| 295 |
metrics:
|
| 296 |
- type: total_reward
|
| 297 |
-
value:
|
| 298 |
name: Total reward
|
| 299 |
- type: expert_normalized_total_reward
|
| 300 |
-
value: 0.
|
| 301 |
name: Expert normalized total reward
|
| 302 |
- type: human_normalized_total_reward
|
| 303 |
-
value:
|
| 304 |
name: Human normalized total reward
|
| 305 |
- task:
|
| 306 |
type: reinforcement-learning
|
|
@@ -310,13 +310,13 @@ model-index:
|
|
| 310 |
type: atari-bankheist
|
| 311 |
metrics:
|
| 312 |
- type: total_reward
|
| 313 |
-
value:
|
| 314 |
name: Total reward
|
| 315 |
- type: expert_normalized_total_reward
|
| 316 |
-
value: 0.
|
| 317 |
name: Expert normalized total reward
|
| 318 |
- type: human_normalized_total_reward
|
| 319 |
-
value: 1.
|
| 320 |
name: Human normalized total reward
|
| 321 |
- task:
|
| 322 |
type: reinforcement-learning
|
|
@@ -326,13 +326,13 @@ model-index:
|
|
| 326 |
type: atari-battlezone
|
| 327 |
metrics:
|
| 328 |
- type: total_reward
|
| 329 |
-
value:
|
| 330 |
name: Total reward
|
| 331 |
- type: expert_normalized_total_reward
|
| 332 |
value: 0.06 +/- 0.02
|
| 333 |
name: Expert normalized total reward
|
| 334 |
- type: human_normalized_total_reward
|
| 335 |
-
value: 0.
|
| 336 |
name: Human normalized total reward
|
| 337 |
- task:
|
| 338 |
type: reinforcement-learning
|
|
@@ -342,13 +342,13 @@ model-index:
|
|
| 342 |
type: atari-beamrider
|
| 343 |
metrics:
|
| 344 |
- type: total_reward
|
| 345 |
-
value:
|
| 346 |
name: Total reward
|
| 347 |
- type: expert_normalized_total_reward
|
| 348 |
value: 0.01 +/- 0.01
|
| 349 |
name: Expert normalized total reward
|
| 350 |
- type: human_normalized_total_reward
|
| 351 |
-
value: 0.
|
| 352 |
name: Human normalized total reward
|
| 353 |
- task:
|
| 354 |
type: reinforcement-learning
|
|
@@ -358,13 +358,13 @@ model-index:
|
|
| 358 |
type: atari-berzerk
|
| 359 |
metrics:
|
| 360 |
- type: total_reward
|
| 361 |
-
value:
|
| 362 |
name: Total reward
|
| 363 |
- type: expert_normalized_total_reward
|
| 364 |
value: 0.01 +/- 0.01
|
| 365 |
name: Expert normalized total reward
|
| 366 |
- type: human_normalized_total_reward
|
| 367 |
-
value: 0.
|
| 368 |
name: Human normalized total reward
|
| 369 |
- task:
|
| 370 |
type: reinforcement-learning
|
|
@@ -374,7 +374,7 @@ model-index:
|
|
| 374 |
type: atari-bowling
|
| 375 |
metrics:
|
| 376 |
- type: total_reward
|
| 377 |
-
value: 22.
|
| 378 |
name: Total reward
|
| 379 |
- type: expert_normalized_total_reward
|
| 380 |
value: 1.00 +/- 0.00
|
|
@@ -390,13 +390,13 @@ model-index:
|
|
| 390 |
type: atari-boxing
|
| 391 |
metrics:
|
| 392 |
- type: total_reward
|
| 393 |
-
value:
|
| 394 |
name: Total reward
|
| 395 |
- type: expert_normalized_total_reward
|
| 396 |
-
value: 0.
|
| 397 |
name: Expert normalized total reward
|
| 398 |
- type: human_normalized_total_reward
|
| 399 |
-
value: 7.
|
| 400 |
name: Human normalized total reward
|
| 401 |
- task:
|
| 402 |
type: reinforcement-learning
|
|
@@ -406,13 +406,13 @@ model-index:
|
|
| 406 |
type: atari-breakout
|
| 407 |
metrics:
|
| 408 |
- type: total_reward
|
| 409 |
-
value:
|
| 410 |
name: Total reward
|
| 411 |
- type: expert_normalized_total_reward
|
| 412 |
value: 0.01 +/- 0.01
|
| 413 |
name: Expert normalized total reward
|
| 414 |
- type: human_normalized_total_reward
|
| 415 |
-
value: 0.
|
| 416 |
name: Human normalized total reward
|
| 417 |
- task:
|
| 418 |
type: reinforcement-learning
|
|
@@ -422,13 +422,13 @@ model-index:
|
|
| 422 |
type: atari-centipede
|
| 423 |
metrics:
|
| 424 |
- type: total_reward
|
| 425 |
-
value:
|
| 426 |
name: Total reward
|
| 427 |
- type: expert_normalized_total_reward
|
| 428 |
-
value: 0.
|
| 429 |
name: Expert normalized total reward
|
| 430 |
- type: human_normalized_total_reward
|
| 431 |
-
value: 0.
|
| 432 |
name: Human normalized total reward
|
| 433 |
- task:
|
| 434 |
type: reinforcement-learning
|
|
@@ -438,13 +438,13 @@ model-index:
|
|
| 438 |
type: atari-choppercommand
|
| 439 |
metrics:
|
| 440 |
- type: total_reward
|
| 441 |
-
value:
|
| 442 |
name: Total reward
|
| 443 |
- type: expert_normalized_total_reward
|
| 444 |
-
value: 0.02 +/- 0.
|
| 445 |
name: Expert normalized total reward
|
| 446 |
- type: human_normalized_total_reward
|
| 447 |
-
value: 0.24 +/- 0.
|
| 448 |
name: Human normalized total reward
|
| 449 |
- task:
|
| 450 |
type: reinforcement-learning
|
|
@@ -454,13 +454,13 @@ model-index:
|
|
| 454 |
type: atari-crazyclimber
|
| 455 |
metrics:
|
| 456 |
- type: total_reward
|
| 457 |
-
value:
|
| 458 |
name: Total reward
|
| 459 |
- type: expert_normalized_total_reward
|
| 460 |
-
value: 0.
|
| 461 |
name: Expert normalized total reward
|
| 462 |
- type: human_normalized_total_reward
|
| 463 |
-
value: 3.
|
| 464 |
name: Human normalized total reward
|
| 465 |
- task:
|
| 466 |
type: reinforcement-learning
|
|
@@ -470,13 +470,13 @@ model-index:
|
|
| 470 |
type: atari-defender
|
| 471 |
metrics:
|
| 472 |
- type: total_reward
|
| 473 |
-
value:
|
| 474 |
name: Total reward
|
| 475 |
- type: expert_normalized_total_reward
|
| 476 |
-
value: 0.10 +/- 0.
|
| 477 |
name: Expert normalized total reward
|
| 478 |
- type: human_normalized_total_reward
|
| 479 |
-
value: 2.30 +/-
|
| 480 |
name: Human normalized total reward
|
| 481 |
- task:
|
| 482 |
type: reinforcement-learning
|
|
@@ -486,13 +486,13 @@ model-index:
|
|
| 486 |
type: atari-demonattack
|
| 487 |
metrics:
|
| 488 |
- type: total_reward
|
| 489 |
-
value:
|
| 490 |
name: Total reward
|
| 491 |
- type: expert_normalized_total_reward
|
| 492 |
value: 0.01 +/- 0.01
|
| 493 |
name: Expert normalized total reward
|
| 494 |
- type: human_normalized_total_reward
|
| 495 |
-
value: 0.
|
| 496 |
name: Human normalized total reward
|
| 497 |
- task:
|
| 498 |
type: reinforcement-learning
|
|
@@ -502,13 +502,13 @@ model-index:
|
|
| 502 |
type: atari-doubledunk
|
| 503 |
metrics:
|
| 504 |
- type: total_reward
|
| 505 |
-
value:
|
| 506 |
name: Total reward
|
| 507 |
- type: expert_normalized_total_reward
|
| 508 |
-
value: 0.
|
| 509 |
name: Expert normalized total reward
|
| 510 |
- type: human_normalized_total_reward
|
| 511 |
-
value: 0.
|
| 512 |
name: Human normalized total reward
|
| 513 |
- task:
|
| 514 |
type: reinforcement-learning
|
|
@@ -518,13 +518,13 @@ model-index:
|
|
| 518 |
type: atari-enduro
|
| 519 |
metrics:
|
| 520 |
- type: total_reward
|
| 521 |
-
value:
|
| 522 |
name: Total reward
|
| 523 |
- type: expert_normalized_total_reward
|
| 524 |
-
value: 0.
|
| 525 |
name: Expert normalized total reward
|
| 526 |
- type: human_normalized_total_reward
|
| 527 |
-
value: 0.
|
| 528 |
name: Human normalized total reward
|
| 529 |
- task:
|
| 530 |
type: reinforcement-learning
|
|
@@ -534,13 +534,13 @@ model-index:
|
|
| 534 |
type: atari-fishingderby
|
| 535 |
metrics:
|
| 536 |
- type: total_reward
|
| 537 |
-
value: -
|
| 538 |
name: Total reward
|
| 539 |
- type: expert_normalized_total_reward
|
| 540 |
-
value: 0.
|
| 541 |
name: Expert normalized total reward
|
| 542 |
- type: human_normalized_total_reward
|
| 543 |
-
value: 0.
|
| 544 |
name: Human normalized total reward
|
| 545 |
- task:
|
| 546 |
type: reinforcement-learning
|
|
@@ -550,10 +550,10 @@ model-index:
|
|
| 550 |
type: atari-freeway
|
| 551 |
metrics:
|
| 552 |
- type: total_reward
|
| 553 |
-
value: 27.
|
| 554 |
name: Total reward
|
| 555 |
- type: expert_normalized_total_reward
|
| 556 |
-
value: 0.81 +/- 0.
|
| 557 |
name: Expert normalized total reward
|
| 558 |
- type: human_normalized_total_reward
|
| 559 |
value: 0.93 +/- 0.06
|
|
@@ -566,13 +566,13 @@ model-index:
|
|
| 566 |
type: atari-frostbite
|
| 567 |
metrics:
|
| 568 |
- type: total_reward
|
| 569 |
-
value:
|
| 570 |
name: Total reward
|
| 571 |
- type: expert_normalized_total_reward
|
| 572 |
-
value: 0.21 +/- 0.
|
| 573 |
name: Expert normalized total reward
|
| 574 |
- type: human_normalized_total_reward
|
| 575 |
-
value: 0.
|
| 576 |
name: Human normalized total reward
|
| 577 |
- task:
|
| 578 |
type: reinforcement-learning
|
|
@@ -582,13 +582,13 @@ model-index:
|
|
| 582 |
type: atari-gopher
|
| 583 |
metrics:
|
| 584 |
- type: total_reward
|
| 585 |
-
value:
|
| 586 |
name: Total reward
|
| 587 |
- type: expert_normalized_total_reward
|
| 588 |
value: 0.06 +/- 0.03
|
| 589 |
name: Expert normalized total reward
|
| 590 |
- type: human_normalized_total_reward
|
| 591 |
-
value: 2.
|
| 592 |
name: Human normalized total reward
|
| 593 |
- task:
|
| 594 |
type: reinforcement-learning
|
|
@@ -598,13 +598,13 @@ model-index:
|
|
| 598 |
type: atari-gravitar
|
| 599 |
metrics:
|
| 600 |
- type: total_reward
|
| 601 |
-
value:
|
| 602 |
name: Total reward
|
| 603 |
- type: expert_normalized_total_reward
|
| 604 |
-
value: 0.
|
| 605 |
name: Expert normalized total reward
|
| 606 |
- type: human_normalized_total_reward
|
| 607 |
-
value: 0.
|
| 608 |
name: Human normalized total reward
|
| 609 |
- task:
|
| 610 |
type: reinforcement-learning
|
|
@@ -614,13 +614,13 @@ model-index:
|
|
| 614 |
type: atari-hero
|
| 615 |
metrics:
|
| 616 |
- type: total_reward
|
| 617 |
-
value:
|
| 618 |
name: Total reward
|
| 619 |
- type: expert_normalized_total_reward
|
| 620 |
-
value: 0.
|
| 621 |
name: Expert normalized total reward
|
| 622 |
- type: human_normalized_total_reward
|
| 623 |
-
value: 0.
|
| 624 |
name: Human normalized total reward
|
| 625 |
- task:
|
| 626 |
type: reinforcement-learning
|
|
@@ -630,13 +630,13 @@ model-index:
|
|
| 630 |
type: atari-icehockey
|
| 631 |
metrics:
|
| 632 |
- type: total_reward
|
| 633 |
-
value: 7.
|
| 634 |
name: Total reward
|
| 635 |
- type: expert_normalized_total_reward
|
| 636 |
-
value: 0.
|
| 637 |
name: Expert normalized total reward
|
| 638 |
- type: human_normalized_total_reward
|
| 639 |
-
value: 1.
|
| 640 |
name: Human normalized total reward
|
| 641 |
- task:
|
| 642 |
type: reinforcement-learning
|
|
@@ -646,13 +646,13 @@ model-index:
|
|
| 646 |
type: atari-jamesbond
|
| 647 |
metrics:
|
| 648 |
- type: total_reward
|
| 649 |
-
value:
|
| 650 |
name: Total reward
|
| 651 |
- type: expert_normalized_total_reward
|
| 652 |
-
value: 0.01 +/- 0.
|
| 653 |
name: Expert normalized total reward
|
| 654 |
- type: human_normalized_total_reward
|
| 655 |
-
value: 1.
|
| 656 |
name: Human normalized total reward
|
| 657 |
- task:
|
| 658 |
type: reinforcement-learning
|
|
@@ -662,13 +662,13 @@ model-index:
|
|
| 662 |
type: atari-kangaroo
|
| 663 |
metrics:
|
| 664 |
- type: total_reward
|
| 665 |
-
value:
|
| 666 |
name: Total reward
|
| 667 |
- type: expert_normalized_total_reward
|
| 668 |
-
value: 0.62 +/- 0.
|
| 669 |
name: Expert normalized total reward
|
| 670 |
- type: human_normalized_total_reward
|
| 671 |
-
value: 0.11 +/- 0.
|
| 672 |
name: Human normalized total reward
|
| 673 |
- task:
|
| 674 |
type: reinforcement-learning
|
|
@@ -678,13 +678,13 @@ model-index:
|
|
| 678 |
type: atari-krull
|
| 679 |
metrics:
|
| 680 |
- type: total_reward
|
| 681 |
-
value:
|
| 682 |
name: Total reward
|
| 683 |
- type: expert_normalized_total_reward
|
| 684 |
value: 0.93 +/- 0.13
|
| 685 |
name: Expert normalized total reward
|
| 686 |
- type: human_normalized_total_reward
|
| 687 |
-
value: 8.
|
| 688 |
name: Human normalized total reward
|
| 689 |
- task:
|
| 690 |
type: reinforcement-learning
|
|
@@ -694,13 +694,13 @@ model-index:
|
|
| 694 |
type: atari-kungfumaster
|
| 695 |
metrics:
|
| 696 |
- type: total_reward
|
| 697 |
-
value:
|
| 698 |
name: Total reward
|
| 699 |
- type: expert_normalized_total_reward
|
| 700 |
-
value: 0.00 +/- 0.01
|
| 701 |
name: Expert normalized total reward
|
| 702 |
- type: human_normalized_total_reward
|
| 703 |
-
value: 0.00 +/- 0.01
|
| 704 |
name: Human normalized total reward
|
| 705 |
- task:
|
| 706 |
type: reinforcement-learning
|
|
@@ -726,13 +726,13 @@ model-index:
|
|
| 726 |
type: atari-mspacman
|
| 727 |
metrics:
|
| 728 |
- type: total_reward
|
| 729 |
-
value:
|
| 730 |
name: Total reward
|
| 731 |
- type: expert_normalized_total_reward
|
| 732 |
-
value: 0.
|
| 733 |
name: Expert normalized total reward
|
| 734 |
- type: human_normalized_total_reward
|
| 735 |
-
value: 0.
|
| 736 |
name: Human normalized total reward
|
| 737 |
- task:
|
| 738 |
type: reinforcement-learning
|
|
@@ -742,13 +742,13 @@ model-index:
|
|
| 742 |
type: atari-namethisgame
|
| 743 |
metrics:
|
| 744 |
- type: total_reward
|
| 745 |
-
value:
|
| 746 |
name: Total reward
|
| 747 |
- type: expert_normalized_total_reward
|
| 748 |
-
value: 0.
|
| 749 |
name: Expert normalized total reward
|
| 750 |
- type: human_normalized_total_reward
|
| 751 |
-
value: 0.
|
| 752 |
name: Human normalized total reward
|
| 753 |
- task:
|
| 754 |
type: reinforcement-learning
|
|
@@ -758,13 +758,13 @@ model-index:
|
|
| 758 |
type: atari-phoenix
|
| 759 |
metrics:
|
| 760 |
- type: total_reward
|
| 761 |
-
value:
|
| 762 |
name: Total reward
|
| 763 |
- type: expert_normalized_total_reward
|
| 764 |
value: 0.00 +/- 0.00
|
| 765 |
name: Expert normalized total reward
|
| 766 |
- type: human_normalized_total_reward
|
| 767 |
-
value: 0.
|
| 768 |
name: Human normalized total reward
|
| 769 |
- task:
|
| 770 |
type: reinforcement-learning
|
|
@@ -774,10 +774,10 @@ model-index:
|
|
| 774 |
type: atari-pitfall
|
| 775 |
metrics:
|
| 776 |
- type: total_reward
|
| 777 |
-
value: -
|
| 778 |
name: Total reward
|
| 779 |
- type: expert_normalized_total_reward
|
| 780 |
-
value: 0.
|
| 781 |
name: Expert normalized total reward
|
| 782 |
- type: human_normalized_total_reward
|
| 783 |
value: 0.03 +/- 0.00
|
|
@@ -790,13 +790,13 @@ model-index:
|
|
| 790 |
type: atari-pong
|
| 791 |
metrics:
|
| 792 |
- type: total_reward
|
| 793 |
-
value:
|
| 794 |
name: Total reward
|
| 795 |
- type: expert_normalized_total_reward
|
| 796 |
-
value: 0.
|
| 797 |
name: Expert normalized total reward
|
| 798 |
- type: human_normalized_total_reward
|
| 799 |
-
value:
|
| 800 |
name: Human normalized total reward
|
| 801 |
- task:
|
| 802 |
type: reinforcement-learning
|
|
@@ -822,13 +822,13 @@ model-index:
|
|
| 822 |
type: atari-qbert
|
| 823 |
metrics:
|
| 824 |
- type: total_reward
|
| 825 |
-
value:
|
| 826 |
name: Total reward
|
| 827 |
- type: expert_normalized_total_reward
|
| 828 |
-
value: 0.
|
| 829 |
name: Expert normalized total reward
|
| 830 |
- type: human_normalized_total_reward
|
| 831 |
-
value: 0.
|
| 832 |
name: Human normalized total reward
|
| 833 |
- task:
|
| 834 |
type: reinforcement-learning
|
|
@@ -838,13 +838,13 @@ model-index:
|
|
| 838 |
type: atari-riverraid
|
| 839 |
metrics:
|
| 840 |
- type: total_reward
|
| 841 |
-
value:
|
| 842 |
name: Total reward
|
| 843 |
- type: expert_normalized_total_reward
|
| 844 |
-
value: 0.
|
| 845 |
name: Expert normalized total reward
|
| 846 |
- type: human_normalized_total_reward
|
| 847 |
-
value: 0.
|
| 848 |
name: Human normalized total reward
|
| 849 |
- task:
|
| 850 |
type: reinforcement-learning
|
|
@@ -854,13 +854,13 @@ model-index:
|
|
| 854 |
type: atari-roadrunner
|
| 855 |
metrics:
|
| 856 |
- type: total_reward
|
| 857 |
-
value:
|
| 858 |
name: Total reward
|
| 859 |
- type: expert_normalized_total_reward
|
| 860 |
-
value: 0.
|
| 861 |
name: Expert normalized total reward
|
| 862 |
- type: human_normalized_total_reward
|
| 863 |
-
value: 0.
|
| 864 |
name: Human normalized total reward
|
| 865 |
- task:
|
| 866 |
type: reinforcement-learning
|
|
@@ -870,13 +870,13 @@ model-index:
|
|
| 870 |
type: atari-robotank
|
| 871 |
metrics:
|
| 872 |
- type: total_reward
|
| 873 |
-
value:
|
| 874 |
name: Total reward
|
| 875 |
- type: expert_normalized_total_reward
|
| 876 |
-
value: 0.
|
| 877 |
name: Expert normalized total reward
|
| 878 |
- type: human_normalized_total_reward
|
| 879 |
-
value: 0.
|
| 880 |
name: Human normalized total reward
|
| 881 |
- task:
|
| 882 |
type: reinforcement-learning
|
|
@@ -886,10 +886,10 @@ model-index:
|
|
| 886 |
type: atari-seaquest
|
| 887 |
metrics:
|
| 888 |
- type: total_reward
|
| 889 |
-
value:
|
| 890 |
name: Total reward
|
| 891 |
- type: expert_normalized_total_reward
|
| 892 |
-
value: 0.
|
| 893 |
name: Expert normalized total reward
|
| 894 |
- type: human_normalized_total_reward
|
| 895 |
value: 0.02 +/- 0.01
|
|
@@ -902,13 +902,13 @@ model-index:
|
|
| 902 |
type: atari-skiing
|
| 903 |
metrics:
|
| 904 |
- type: total_reward
|
| 905 |
-
value: -
|
| 906 |
name: Total reward
|
| 907 |
- type: expert_normalized_total_reward
|
| 908 |
-
value: 0.
|
| 909 |
name: Expert normalized total reward
|
| 910 |
- type: human_normalized_total_reward
|
| 911 |
-
value: 0.
|
| 912 |
name: Human normalized total reward
|
| 913 |
- task:
|
| 914 |
type: reinforcement-learning
|
|
@@ -918,13 +918,13 @@ model-index:
|
|
| 918 |
type: atari-solaris
|
| 919 |
metrics:
|
| 920 |
- type: total_reward
|
| 921 |
-
value:
|
| 922 |
name: Total reward
|
| 923 |
- type: expert_normalized_total_reward
|
| 924 |
-
value: 0.
|
| 925 |
name: Expert normalized total reward
|
| 926 |
- type: human_normalized_total_reward
|
| 927 |
-
value: 0.00 +/- 0.04
|
| 928 |
name: Human normalized total reward
|
| 929 |
- task:
|
| 930 |
type: reinforcement-learning
|
|
@@ -934,13 +934,13 @@ model-index:
|
|
| 934 |
type: atari-spaceinvaders
|
| 935 |
metrics:
|
| 936 |
- type: total_reward
|
| 937 |
-
value:
|
| 938 |
name: Total reward
|
| 939 |
- type: expert_normalized_total_reward
|
| 940 |
-
value: 0.01 +/- 0.
|
| 941 |
name: Expert normalized total reward
|
| 942 |
- type: human_normalized_total_reward
|
| 943 |
-
value: 0.12 +/- 0.
|
| 944 |
name: Human normalized total reward
|
| 945 |
- task:
|
| 946 |
type: reinforcement-learning
|
|
@@ -950,13 +950,13 @@ model-index:
|
|
| 950 |
type: atari-stargunner
|
| 951 |
metrics:
|
| 952 |
- type: total_reward
|
| 953 |
-
value:
|
| 954 |
name: Total reward
|
| 955 |
- type: expert_normalized_total_reward
|
| 956 |
value: 0.01 +/- 0.01
|
| 957 |
name: Expert normalized total reward
|
| 958 |
- type: human_normalized_total_reward
|
| 959 |
-
value: 0.
|
| 960 |
name: Human normalized total reward
|
| 961 |
- task:
|
| 962 |
type: reinforcement-learning
|
|
@@ -966,13 +966,13 @@ model-index:
|
|
| 966 |
type: atari-surround
|
| 967 |
metrics:
|
| 968 |
- type: total_reward
|
| 969 |
-
value:
|
| 970 |
name: Total reward
|
| 971 |
- type: expert_normalized_total_reward
|
| 972 |
-
value: 0.
|
| 973 |
name: Expert normalized total reward
|
| 974 |
- type: human_normalized_total_reward
|
| 975 |
-
value: 0.
|
| 976 |
name: Human normalized total reward
|
| 977 |
- task:
|
| 978 |
type: reinforcement-learning
|
|
@@ -982,13 +982,13 @@ model-index:
|
|
| 982 |
type: atari-tennis
|
| 983 |
metrics:
|
| 984 |
- type: total_reward
|
| 985 |
-
value: -
|
| 986 |
name: Total reward
|
| 987 |
- type: expert_normalized_total_reward
|
| 988 |
-
value: 0.
|
| 989 |
name: Expert normalized total reward
|
| 990 |
- type: human_normalized_total_reward
|
| 991 |
-
value: 0.
|
| 992 |
name: Human normalized total reward
|
| 993 |
- task:
|
| 994 |
type: reinforcement-learning
|
|
@@ -998,13 +998,13 @@ model-index:
|
|
| 998 |
type: atari-timepilot
|
| 999 |
metrics:
|
| 1000 |
- type: total_reward
|
| 1001 |
-
value:
|
| 1002 |
name: Total reward
|
| 1003 |
- type: expert_normalized_total_reward
|
| 1004 |
-
value: 0.
|
| 1005 |
name: Expert normalized total reward
|
| 1006 |
- type: human_normalized_total_reward
|
| 1007 |
-
value:
|
| 1008 |
name: Human normalized total reward
|
| 1009 |
- task:
|
| 1010 |
type: reinforcement-learning
|
|
@@ -1014,13 +1014,13 @@ model-index:
|
|
| 1014 |
type: atari-tutankham
|
| 1015 |
metrics:
|
| 1016 |
- type: total_reward
|
| 1017 |
-
value:
|
| 1018 |
name: Total reward
|
| 1019 |
- type: expert_normalized_total_reward
|
| 1020 |
-
value: 0.
|
| 1021 |
name: Expert normalized total reward
|
| 1022 |
- type: human_normalized_total_reward
|
| 1023 |
-
value: 0.
|
| 1024 |
name: Human normalized total reward
|
| 1025 |
- task:
|
| 1026 |
type: reinforcement-learning
|
|
@@ -1030,13 +1030,13 @@ model-index:
|
|
| 1030 |
type: atari-upndown
|
| 1031 |
metrics:
|
| 1032 |
- type: total_reward
|
| 1033 |
-
value:
|
| 1034 |
name: Total reward
|
| 1035 |
- type: expert_normalized_total_reward
|
| 1036 |
value: 0.04 +/- 0.02
|
| 1037 |
name: Expert normalized total reward
|
| 1038 |
- type: human_normalized_total_reward
|
| 1039 |
-
value: 1.
|
| 1040 |
name: Human normalized total reward
|
| 1041 |
- task:
|
| 1042 |
type: reinforcement-learning
|
|
@@ -1062,13 +1062,13 @@ model-index:
|
|
| 1062 |
type: atari-videopinball
|
| 1063 |
metrics:
|
| 1064 |
- type: total_reward
|
| 1065 |
-
value:
|
| 1066 |
name: Total reward
|
| 1067 |
- type: expert_normalized_total_reward
|
| 1068 |
value: 0.03 +/- 0.02
|
| 1069 |
name: Expert normalized total reward
|
| 1070 |
- type: human_normalized_total_reward
|
| 1071 |
-
value: 0.
|
| 1072 |
name: Human normalized total reward
|
| 1073 |
- task:
|
| 1074 |
type: reinforcement-learning
|
|
@@ -1078,13 +1078,13 @@ model-index:
|
|
| 1078 |
type: atari-wizardofwor
|
| 1079 |
metrics:
|
| 1080 |
- type: total_reward
|
| 1081 |
-
value:
|
| 1082 |
name: Total reward
|
| 1083 |
- type: expert_normalized_total_reward
|
| 1084 |
-
value: 0.
|
| 1085 |
name: Expert normalized total reward
|
| 1086 |
- type: human_normalized_total_reward
|
| 1087 |
-
value: 0.
|
| 1088 |
name: Human normalized total reward
|
| 1089 |
- task:
|
| 1090 |
type: reinforcement-learning
|
|
@@ -1094,13 +1094,13 @@ model-index:
|
|
| 1094 |
type: atari-yarsrevenge
|
| 1095 |
metrics:
|
| 1096 |
- type: total_reward
|
| 1097 |
-
value:
|
| 1098 |
name: Total reward
|
| 1099 |
- type: expert_normalized_total_reward
|
| 1100 |
-
value: 0.
|
| 1101 |
name: Expert normalized total reward
|
| 1102 |
- type: human_normalized_total_reward
|
| 1103 |
-
value: 0.
|
| 1104 |
name: Human normalized total reward
|
| 1105 |
- task:
|
| 1106 |
type: reinforcement-learning
|
|
@@ -1110,13 +1110,13 @@ model-index:
|
|
| 1110 |
type: atari-zaxxon
|
| 1111 |
metrics:
|
| 1112 |
- type: total_reward
|
| 1113 |
-
value:
|
| 1114 |
name: Total reward
|
| 1115 |
- type: expert_normalized_total_reward
|
| 1116 |
-
value: 0.
|
| 1117 |
name: Expert normalized total reward
|
| 1118 |
- type: human_normalized_total_reward
|
| 1119 |
-
value: 0.
|
| 1120 |
name: Human normalized total reward
|
| 1121 |
- task:
|
| 1122 |
type: reinforcement-learning
|
|
@@ -1126,10 +1126,10 @@ model-index:
|
|
| 1126 |
type: babyai-action-obj-door
|
| 1127 |
metrics:
|
| 1128 |
- type: total_reward
|
| 1129 |
-
value: 0.
|
| 1130 |
name: Total reward
|
| 1131 |
- type: expert_normalized_total_reward
|
| 1132 |
-
value: 0.
|
| 1133 |
name: Expert normalized total reward
|
| 1134 |
- task:
|
| 1135 |
type: reinforcement-learning
|
|
@@ -1152,10 +1152,10 @@ model-index:
|
|
| 1152 |
type: babyai-boss-level-no-unlock
|
| 1153 |
metrics:
|
| 1154 |
- type: total_reward
|
| 1155 |
-
value: 0.
|
| 1156 |
name: Total reward
|
| 1157 |
- type: expert_normalized_total_reward
|
| 1158 |
-
value: 0.
|
| 1159 |
name: Expert normalized total reward
|
| 1160 |
- task:
|
| 1161 |
type: reinforcement-learning
|
|
@@ -1165,10 +1165,10 @@ model-index:
|
|
| 1165 |
type: babyai-boss-level
|
| 1166 |
metrics:
|
| 1167 |
- type: total_reward
|
| 1168 |
-
value: 0.
|
| 1169 |
name: Total reward
|
| 1170 |
- type: expert_normalized_total_reward
|
| 1171 |
-
value: 0.
|
| 1172 |
name: Expert normalized total reward
|
| 1173 |
- task:
|
| 1174 |
type: reinforcement-learning
|
|
@@ -1178,7 +1178,7 @@ model-index:
|
|
| 1178 |
type: babyai-find-obj-s5
|
| 1179 |
metrics:
|
| 1180 |
- type: total_reward
|
| 1181 |
-
value: 0.
|
| 1182 |
name: Total reward
|
| 1183 |
- type: expert_normalized_total_reward
|
| 1184 |
value: 1.00 +/- 0.04
|
|
@@ -1191,10 +1191,10 @@ model-index:
|
|
| 1191 |
type: babyai-go-to-door
|
| 1192 |
metrics:
|
| 1193 |
- type: total_reward
|
| 1194 |
-
value: 0.99 +/- 0.
|
| 1195 |
name: Total reward
|
| 1196 |
- type: expert_normalized_total_reward
|
| 1197 |
-
value: 1.00 +/- 0.
|
| 1198 |
name: Expert normalized total reward
|
| 1199 |
- task:
|
| 1200 |
type: reinforcement-learning
|
|
@@ -1204,10 +1204,10 @@ model-index:
|
|
| 1204 |
type: babyai-go-to-imp-unlock
|
| 1205 |
metrics:
|
| 1206 |
- type: total_reward
|
| 1207 |
-
value: 0.
|
| 1208 |
name: Total reward
|
| 1209 |
- type: expert_normalized_total_reward
|
| 1210 |
-
value: 0.
|
| 1211 |
name: Expert normalized total reward
|
| 1212 |
- task:
|
| 1213 |
type: reinforcement-learning
|
|
@@ -1217,10 +1217,10 @@ model-index:
|
|
| 1217 |
type: babyai-go-to-local
|
| 1218 |
metrics:
|
| 1219 |
- type: total_reward
|
| 1220 |
-
value: 0.
|
| 1221 |
name: Total reward
|
| 1222 |
- type: expert_normalized_total_reward
|
| 1223 |
-
value: 0.
|
| 1224 |
name: Expert normalized total reward
|
| 1225 |
- task:
|
| 1226 |
type: reinforcement-learning
|
|
@@ -1233,7 +1233,7 @@ model-index:
|
|
| 1233 |
value: 0.98 +/- 0.04
|
| 1234 |
name: Total reward
|
| 1235 |
- type: expert_normalized_total_reward
|
| 1236 |
-
value: 0.
|
| 1237 |
name: Expert normalized total reward
|
| 1238 |
- task:
|
| 1239 |
type: reinforcement-learning
|
|
@@ -1243,10 +1243,10 @@ model-index:
|
|
| 1243 |
type: babyai-go-to-obj
|
| 1244 |
metrics:
|
| 1245 |
- type: total_reward
|
| 1246 |
-
value: 0.
|
| 1247 |
name: Total reward
|
| 1248 |
- type: expert_normalized_total_reward
|
| 1249 |
-
value:
|
| 1250 |
name: Expert normalized total reward
|
| 1251 |
- task:
|
| 1252 |
type: reinforcement-learning
|
|
@@ -1256,10 +1256,10 @@ model-index:
|
|
| 1256 |
type: babyai-go-to-red-ball-grey
|
| 1257 |
metrics:
|
| 1258 |
- type: total_reward
|
| 1259 |
-
value: 0.
|
| 1260 |
name: Total reward
|
| 1261 |
- type: expert_normalized_total_reward
|
| 1262 |
-
value:
|
| 1263 |
name: Expert normalized total reward
|
| 1264 |
- task:
|
| 1265 |
type: reinforcement-learning
|
|
@@ -1272,7 +1272,7 @@ model-index:
|
|
| 1272 |
value: 0.93 +/- 0.03
|
| 1273 |
name: Total reward
|
| 1274 |
- type: expert_normalized_total_reward
|
| 1275 |
-
value: 1.00 +/- 0.
|
| 1276 |
name: Expert normalized total reward
|
| 1277 |
- task:
|
| 1278 |
type: reinforcement-learning
|
|
@@ -1282,10 +1282,10 @@ model-index:
|
|
| 1282 |
type: babyai-go-to-red-ball
|
| 1283 |
metrics:
|
| 1284 |
- type: total_reward
|
| 1285 |
-
value: 0.91 +/- 0.
|
| 1286 |
name: Total reward
|
| 1287 |
- type: expert_normalized_total_reward
|
| 1288 |
-
value: 0.98 +/- 0.
|
| 1289 |
name: Expert normalized total reward
|
| 1290 |
- task:
|
| 1291 |
type: reinforcement-learning
|
|
@@ -1295,10 +1295,10 @@ model-index:
|
|
| 1295 |
type: babyai-go-to-red-blue-ball
|
| 1296 |
metrics:
|
| 1297 |
- type: total_reward
|
| 1298 |
-
value: 0.
|
| 1299 |
name: Total reward
|
| 1300 |
- type: expert_normalized_total_reward
|
| 1301 |
-
value: 0.
|
| 1302 |
name: Expert normalized total reward
|
| 1303 |
- task:
|
| 1304 |
type: reinforcement-learning
|
|
@@ -1308,10 +1308,10 @@ model-index:
|
|
| 1308 |
type: babyai-go-to-seq
|
| 1309 |
metrics:
|
| 1310 |
- type: total_reward
|
| 1311 |
-
value: 0.73 +/- 0.
|
| 1312 |
name: Total reward
|
| 1313 |
- type: expert_normalized_total_reward
|
| 1314 |
-
value: 0.
|
| 1315 |
name: Expert normalized total reward
|
| 1316 |
- task:
|
| 1317 |
type: reinforcement-learning
|
|
@@ -1321,10 +1321,10 @@ model-index:
|
|
| 1321 |
type: babyai-go-to
|
| 1322 |
metrics:
|
| 1323 |
- type: total_reward
|
| 1324 |
-
value: 0.
|
| 1325 |
name: Total reward
|
| 1326 |
- type: expert_normalized_total_reward
|
| 1327 |
-
value: 0.
|
| 1328 |
name: Expert normalized total reward
|
| 1329 |
- task:
|
| 1330 |
type: reinforcement-learning
|
|
@@ -1334,10 +1334,10 @@ model-index:
|
|
| 1334 |
type: babyai-key-corridor
|
| 1335 |
metrics:
|
| 1336 |
- type: total_reward
|
| 1337 |
-
value: 0.
|
| 1338 |
name: Total reward
|
| 1339 |
- type: expert_normalized_total_reward
|
| 1340 |
-
value: 0.
|
| 1341 |
name: Expert normalized total reward
|
| 1342 |
- task:
|
| 1343 |
type: reinforcement-learning
|
|
@@ -1347,10 +1347,10 @@ model-index:
|
|
| 1347 |
type: babyai-mini-boss-level
|
| 1348 |
metrics:
|
| 1349 |
- type: total_reward
|
| 1350 |
-
value: 0.
|
| 1351 |
name: Total reward
|
| 1352 |
- type: expert_normalized_total_reward
|
| 1353 |
-
value: 0.
|
| 1354 |
name: Expert normalized total reward
|
| 1355 |
- task:
|
| 1356 |
type: reinforcement-learning
|
|
@@ -1360,10 +1360,10 @@ model-index:
|
|
| 1360 |
type: babyai-move-two-across-s8n9
|
| 1361 |
metrics:
|
| 1362 |
- type: total_reward
|
| 1363 |
-
value: 0.
|
| 1364 |
name: Total reward
|
| 1365 |
- type: expert_normalized_total_reward
|
| 1366 |
-
value: 0.
|
| 1367 |
name: Expert normalized total reward
|
| 1368 |
- task:
|
| 1369 |
type: reinforcement-learning
|
|
@@ -1373,7 +1373,7 @@ model-index:
|
|
| 1373 |
type: babyai-one-room-s8
|
| 1374 |
metrics:
|
| 1375 |
- type: total_reward
|
| 1376 |
-
value: 0.92 +/- 0.
|
| 1377 |
name: Total reward
|
| 1378 |
- type: expert_normalized_total_reward
|
| 1379 |
value: 1.00 +/- 0.04
|
|
@@ -1399,10 +1399,10 @@ model-index:
|
|
| 1399 |
type: babyai-open-doors-order-n4
|
| 1400 |
metrics:
|
| 1401 |
- type: total_reward
|
| 1402 |
-
value: 0.96 +/- 0.
|
| 1403 |
name: Total reward
|
| 1404 |
- type: expert_normalized_total_reward
|
| 1405 |
-
value: 0.
|
| 1406 |
name: Expert normalized total reward
|
| 1407 |
- task:
|
| 1408 |
type: reinforcement-learning
|
|
@@ -1412,7 +1412,7 @@ model-index:
|
|
| 1412 |
type: babyai-open-red-door
|
| 1413 |
metrics:
|
| 1414 |
- type: total_reward
|
| 1415 |
-
value: 0.92 +/- 0.
|
| 1416 |
name: Total reward
|
| 1417 |
- type: expert_normalized_total_reward
|
| 1418 |
value: 1.00 +/- 0.03
|
|
@@ -1438,10 +1438,10 @@ model-index:
|
|
| 1438 |
type: babyai-open
|
| 1439 |
metrics:
|
| 1440 |
- type: total_reward
|
| 1441 |
-
value: 0.
|
| 1442 |
name: Total reward
|
| 1443 |
- type: expert_normalized_total_reward
|
| 1444 |
-
value: 0.
|
| 1445 |
name: Expert normalized total reward
|
| 1446 |
- task:
|
| 1447 |
type: reinforcement-learning
|
|
@@ -1464,10 +1464,10 @@ model-index:
|
|
| 1464 |
type: babyai-pickup-dist
|
| 1465 |
metrics:
|
| 1466 |
- type: total_reward
|
| 1467 |
-
value: 0.
|
| 1468 |
name: Total reward
|
| 1469 |
- type: expert_normalized_total_reward
|
| 1470 |
-
value: 1.
|
| 1471 |
name: Expert normalized total reward
|
| 1472 |
- task:
|
| 1473 |
type: reinforcement-learning
|
|
@@ -1477,10 +1477,10 @@ model-index:
|
|
| 1477 |
type: babyai-pickup-loc
|
| 1478 |
metrics:
|
| 1479 |
- type: total_reward
|
| 1480 |
-
value: 0.
|
| 1481 |
name: Total reward
|
| 1482 |
- type: expert_normalized_total_reward
|
| 1483 |
-
value: 0.
|
| 1484 |
name: Expert normalized total reward
|
| 1485 |
- task:
|
| 1486 |
type: reinforcement-learning
|
|
@@ -1490,10 +1490,10 @@ model-index:
|
|
| 1490 |
type: babyai-pickup
|
| 1491 |
metrics:
|
| 1492 |
- type: total_reward
|
| 1493 |
-
value: 0.
|
| 1494 |
name: Total reward
|
| 1495 |
- type: expert_normalized_total_reward
|
| 1496 |
-
value: 0.
|
| 1497 |
name: Expert normalized total reward
|
| 1498 |
- task:
|
| 1499 |
type: reinforcement-learning
|
|
@@ -1503,10 +1503,10 @@ model-index:
|
|
| 1503 |
type: babyai-put-next-local
|
| 1504 |
metrics:
|
| 1505 |
- type: total_reward
|
| 1506 |
-
value: 0.
|
| 1507 |
name: Total reward
|
| 1508 |
- type: expert_normalized_total_reward
|
| 1509 |
-
value: 0.
|
| 1510 |
name: Expert normalized total reward
|
| 1511 |
- task:
|
| 1512 |
type: reinforcement-learning
|
|
@@ -1516,10 +1516,10 @@ model-index:
|
|
| 1516 |
type: babyai-put-next
|
| 1517 |
metrics:
|
| 1518 |
- type: total_reward
|
| 1519 |
-
value: 0.
|
| 1520 |
name: Total reward
|
| 1521 |
- type: expert_normalized_total_reward
|
| 1522 |
-
value: 0.
|
| 1523 |
name: Expert normalized total reward
|
| 1524 |
- task:
|
| 1525 |
type: reinforcement-learning
|
|
@@ -1529,10 +1529,10 @@ model-index:
|
|
| 1529 |
type: babyai-synth-loc
|
| 1530 |
metrics:
|
| 1531 |
- type: total_reward
|
| 1532 |
-
value: 0.
|
| 1533 |
name: Total reward
|
| 1534 |
- type: expert_normalized_total_reward
|
| 1535 |
-
value: 0.
|
| 1536 |
name: Expert normalized total reward
|
| 1537 |
- task:
|
| 1538 |
type: reinforcement-learning
|
|
@@ -1542,10 +1542,10 @@ model-index:
|
|
| 1542 |
type: babyai-synth-seq
|
| 1543 |
metrics:
|
| 1544 |
- type: total_reward
|
| 1545 |
-
value: 0.57 +/- 0.
|
| 1546 |
name: Total reward
|
| 1547 |
- type: expert_normalized_total_reward
|
| 1548 |
-
value: 0.
|
| 1549 |
name: Expert normalized total reward
|
| 1550 |
- task:
|
| 1551 |
type: reinforcement-learning
|
|
@@ -1555,10 +1555,10 @@ model-index:
|
|
| 1555 |
type: babyai-synth
|
| 1556 |
metrics:
|
| 1557 |
- type: total_reward
|
| 1558 |
-
value: 0.
|
| 1559 |
name: Total reward
|
| 1560 |
- type: expert_normalized_total_reward
|
| 1561 |
-
value: 0.
|
| 1562 |
name: Expert normalized total reward
|
| 1563 |
- task:
|
| 1564 |
type: reinforcement-learning
|
|
@@ -1568,10 +1568,10 @@ model-index:
|
|
| 1568 |
type: babyai-unblock-pickup
|
| 1569 |
metrics:
|
| 1570 |
- type: total_reward
|
| 1571 |
-
value: 0.
|
| 1572 |
name: Total reward
|
| 1573 |
- type: expert_normalized_total_reward
|
| 1574 |
-
value: 0.
|
| 1575 |
name: Expert normalized total reward
|
| 1576 |
- task:
|
| 1577 |
type: reinforcement-learning
|
|
@@ -1594,10 +1594,10 @@ model-index:
|
|
| 1594 |
type: babyai-unlock-pickup
|
| 1595 |
metrics:
|
| 1596 |
- type: total_reward
|
| 1597 |
-
value: 0.
|
| 1598 |
name: Total reward
|
| 1599 |
- type: expert_normalized_total_reward
|
| 1600 |
-
value: 1.
|
| 1601 |
name: Expert normalized total reward
|
| 1602 |
- task:
|
| 1603 |
type: reinforcement-learning
|
|
@@ -1607,10 +1607,10 @@ model-index:
|
|
| 1607 |
type: babyai-unlock-to-unlock
|
| 1608 |
metrics:
|
| 1609 |
- type: total_reward
|
| 1610 |
-
value: 0.
|
| 1611 |
name: Total reward
|
| 1612 |
- type: expert_normalized_total_reward
|
| 1613 |
-
value: 0.
|
| 1614 |
name: Expert normalized total reward
|
| 1615 |
- task:
|
| 1616 |
type: reinforcement-learning
|
|
@@ -1620,10 +1620,10 @@ model-index:
|
|
| 1620 |
type: babyai-unlock
|
| 1621 |
metrics:
|
| 1622 |
- type: total_reward
|
| 1623 |
-
value: 0.
|
| 1624 |
name: Total reward
|
| 1625 |
- type: expert_normalized_total_reward
|
| 1626 |
-
value: 0.
|
| 1627 |
name: Expert normalized total reward
|
| 1628 |
- task:
|
| 1629 |
type: reinforcement-learning
|
|
@@ -1633,10 +1633,10 @@ model-index:
|
|
| 1633 |
type: metaworld-assembly
|
| 1634 |
metrics:
|
| 1635 |
- type: total_reward
|
| 1636 |
-
value:
|
| 1637 |
name: Total reward
|
| 1638 |
- type: expert_normalized_total_reward
|
| 1639 |
-
value: 0.
|
| 1640 |
name: Expert normalized total reward
|
| 1641 |
- task:
|
| 1642 |
type: reinforcement-learning
|
|
@@ -1646,7 +1646,7 @@ model-index:
|
|
| 1646 |
type: metaworld-basketball
|
| 1647 |
metrics:
|
| 1648 |
- type: total_reward
|
| 1649 |
-
value: 1.
|
| 1650 |
name: Total reward
|
| 1651 |
- type: expert_normalized_total_reward
|
| 1652 |
value: -0.00 +/- 0.00
|
|
@@ -1659,10 +1659,10 @@ model-index:
|
|
| 1659 |
type: metaworld-bin-picking
|
| 1660 |
metrics:
|
| 1661 |
- type: total_reward
|
| 1662 |
-
value:
|
| 1663 |
name: Total reward
|
| 1664 |
- type: expert_normalized_total_reward
|
| 1665 |
-
value: 0.
|
| 1666 |
name: Expert normalized total reward
|
| 1667 |
- task:
|
| 1668 |
type: reinforcement-learning
|
|
@@ -1672,10 +1672,10 @@ model-index:
|
|
| 1672 |
type: metaworld-box-close
|
| 1673 |
metrics:
|
| 1674 |
- type: total_reward
|
| 1675 |
-
value:
|
| 1676 |
name: Total reward
|
| 1677 |
- type: expert_normalized_total_reward
|
| 1678 |
-
value: 0.
|
| 1679 |
name: Expert normalized total reward
|
| 1680 |
- task:
|
| 1681 |
type: reinforcement-learning
|
|
@@ -1685,10 +1685,10 @@ model-index:
|
|
| 1685 |
type: metaworld-button-press-topdown-wall
|
| 1686 |
metrics:
|
| 1687 |
- type: total_reward
|
| 1688 |
-
value:
|
| 1689 |
name: Total reward
|
| 1690 |
- type: expert_normalized_total_reward
|
| 1691 |
-
value: 0.
|
| 1692 |
name: Expert normalized total reward
|
| 1693 |
- task:
|
| 1694 |
type: reinforcement-learning
|
|
@@ -1698,10 +1698,10 @@ model-index:
|
|
| 1698 |
type: metaworld-button-press-topdown
|
| 1699 |
metrics:
|
| 1700 |
- type: total_reward
|
| 1701 |
-
value:
|
| 1702 |
name: Total reward
|
| 1703 |
- type: expert_normalized_total_reward
|
| 1704 |
-
value: 0.
|
| 1705 |
name: Expert normalized total reward
|
| 1706 |
- task:
|
| 1707 |
type: reinforcement-learning
|
|
@@ -1711,10 +1711,10 @@ model-index:
|
|
| 1711 |
type: metaworld-button-press-wall
|
| 1712 |
metrics:
|
| 1713 |
- type: total_reward
|
| 1714 |
-
value:
|
| 1715 |
name: Total reward
|
| 1716 |
- type: expert_normalized_total_reward
|
| 1717 |
-
value: 0.
|
| 1718 |
name: Expert normalized total reward
|
| 1719 |
- task:
|
| 1720 |
type: reinforcement-learning
|
|
@@ -1724,10 +1724,10 @@ model-index:
|
|
| 1724 |
type: metaworld-button-press
|
| 1725 |
metrics:
|
| 1726 |
- type: total_reward
|
| 1727 |
-
value:
|
| 1728 |
name: Total reward
|
| 1729 |
- type: expert_normalized_total_reward
|
| 1730 |
-
value: 0.
|
| 1731 |
name: Expert normalized total reward
|
| 1732 |
- task:
|
| 1733 |
type: reinforcement-learning
|
|
@@ -1737,10 +1737,10 @@ model-index:
|
|
| 1737 |
type: metaworld-coffee-button
|
| 1738 |
metrics:
|
| 1739 |
- type: total_reward
|
| 1740 |
-
value:
|
| 1741 |
name: Total reward
|
| 1742 |
- type: expert_normalized_total_reward
|
| 1743 |
-
value: 0.
|
| 1744 |
name: Expert normalized total reward
|
| 1745 |
- task:
|
| 1746 |
type: reinforcement-learning
|
|
@@ -1750,10 +1750,10 @@ model-index:
|
|
| 1750 |
type: metaworld-coffee-pull
|
| 1751 |
metrics:
|
| 1752 |
- type: total_reward
|
| 1753 |
-
value:
|
| 1754 |
name: Total reward
|
| 1755 |
- type: expert_normalized_total_reward
|
| 1756 |
-
value: 0.
|
| 1757 |
name: Expert normalized total reward
|
| 1758 |
- task:
|
| 1759 |
type: reinforcement-learning
|
|
@@ -1763,10 +1763,10 @@ model-index:
|
|
| 1763 |
type: metaworld-coffee-push
|
| 1764 |
metrics:
|
| 1765 |
- type: total_reward
|
| 1766 |
-
value:
|
| 1767 |
name: Total reward
|
| 1768 |
- type: expert_normalized_total_reward
|
| 1769 |
-
value: 0.
|
| 1770 |
name: Expert normalized total reward
|
| 1771 |
- task:
|
| 1772 |
type: reinforcement-learning
|
|
@@ -1776,10 +1776,10 @@ model-index:
|
|
| 1776 |
type: metaworld-dial-turn
|
| 1777 |
metrics:
|
| 1778 |
- type: total_reward
|
| 1779 |
-
value:
|
| 1780 |
name: Total reward
|
| 1781 |
- type: expert_normalized_total_reward
|
| 1782 |
-
value: 0.
|
| 1783 |
name: Expert normalized total reward
|
| 1784 |
- task:
|
| 1785 |
type: reinforcement-learning
|
|
@@ -1789,10 +1789,10 @@ model-index:
|
|
| 1789 |
type: metaworld-disassemble
|
| 1790 |
metrics:
|
| 1791 |
- type: total_reward
|
| 1792 |
-
value:
|
| 1793 |
name: Total reward
|
| 1794 |
- type: expert_normalized_total_reward
|
| 1795 |
-
value:
|
| 1796 |
name: Expert normalized total reward
|
| 1797 |
- task:
|
| 1798 |
type: reinforcement-learning
|
|
@@ -1802,7 +1802,7 @@ model-index:
|
|
| 1802 |
type: metaworld-door-close
|
| 1803 |
metrics:
|
| 1804 |
- type: total_reward
|
| 1805 |
-
value:
|
| 1806 |
name: Total reward
|
| 1807 |
- type: expert_normalized_total_reward
|
| 1808 |
value: 1.00 +/- 0.06
|
|
@@ -1815,7 +1815,7 @@ model-index:
|
|
| 1815 |
type: metaworld-door-lock
|
| 1816 |
metrics:
|
| 1817 |
- type: total_reward
|
| 1818 |
-
value:
|
| 1819 |
name: Total reward
|
| 1820 |
- type: expert_normalized_total_reward
|
| 1821 |
value: 0.81 +/- 0.28
|
|
@@ -1828,10 +1828,10 @@ model-index:
|
|
| 1828 |
type: metaworld-door-open
|
| 1829 |
metrics:
|
| 1830 |
- type: total_reward
|
| 1831 |
-
value:
|
| 1832 |
name: Total reward
|
| 1833 |
- type: expert_normalized_total_reward
|
| 1834 |
-
value: 0.
|
| 1835 |
name: Expert normalized total reward
|
| 1836 |
- task:
|
| 1837 |
type: reinforcement-learning
|
|
@@ -1841,10 +1841,10 @@ model-index:
|
|
| 1841 |
type: metaworld-door-unlock
|
| 1842 |
metrics:
|
| 1843 |
- type: total_reward
|
| 1844 |
-
value:
|
| 1845 |
name: Total reward
|
| 1846 |
- type: expert_normalized_total_reward
|
| 1847 |
-
value: 0.
|
| 1848 |
name: Expert normalized total reward
|
| 1849 |
- task:
|
| 1850 |
type: reinforcement-learning
|
|
@@ -1854,10 +1854,10 @@ model-index:
|
|
| 1854 |
type: metaworld-drawer-close
|
| 1855 |
metrics:
|
| 1856 |
- type: total_reward
|
| 1857 |
-
value:
|
| 1858 |
name: Total reward
|
| 1859 |
- type: expert_normalized_total_reward
|
| 1860 |
-
value: 0.
|
| 1861 |
name: Expert normalized total reward
|
| 1862 |
- task:
|
| 1863 |
type: reinforcement-learning
|
|
@@ -1867,10 +1867,10 @@ model-index:
|
|
| 1867 |
type: metaworld-drawer-open
|
| 1868 |
metrics:
|
| 1869 |
- type: total_reward
|
| 1870 |
-
value:
|
| 1871 |
name: Total reward
|
| 1872 |
- type: expert_normalized_total_reward
|
| 1873 |
-
value: 0.
|
| 1874 |
name: Expert normalized total reward
|
| 1875 |
- task:
|
| 1876 |
type: reinforcement-learning
|
|
@@ -1880,10 +1880,10 @@ model-index:
|
|
| 1880 |
type: metaworld-faucet-close
|
| 1881 |
metrics:
|
| 1882 |
- type: total_reward
|
| 1883 |
-
value:
|
| 1884 |
name: Total reward
|
| 1885 |
- type: expert_normalized_total_reward
|
| 1886 |
-
value: 0.
|
| 1887 |
name: Expert normalized total reward
|
| 1888 |
- task:
|
| 1889 |
type: reinforcement-learning
|
|
@@ -1893,10 +1893,10 @@ model-index:
|
|
| 1893 |
type: metaworld-faucet-open
|
| 1894 |
metrics:
|
| 1895 |
- type: total_reward
|
| 1896 |
-
value:
|
| 1897 |
name: Total reward
|
| 1898 |
- type: expert_normalized_total_reward
|
| 1899 |
-
value: 0.
|
| 1900 |
name: Expert normalized total reward
|
| 1901 |
- task:
|
| 1902 |
type: reinforcement-learning
|
|
@@ -1906,10 +1906,10 @@ model-index:
|
|
| 1906 |
type: metaworld-hammer
|
| 1907 |
metrics:
|
| 1908 |
- type: total_reward
|
| 1909 |
-
value:
|
| 1910 |
name: Total reward
|
| 1911 |
- type: expert_normalized_total_reward
|
| 1912 |
-
value:
|
| 1913 |
name: Expert normalized total reward
|
| 1914 |
- task:
|
| 1915 |
type: reinforcement-learning
|
|
@@ -1919,10 +1919,10 @@ model-index:
|
|
| 1919 |
type: metaworld-hand-insert
|
| 1920 |
metrics:
|
| 1921 |
- type: total_reward
|
| 1922 |
-
value:
|
| 1923 |
name: Total reward
|
| 1924 |
- type: expert_normalized_total_reward
|
| 1925 |
-
value: 0.
|
| 1926 |
name: Expert normalized total reward
|
| 1927 |
- task:
|
| 1928 |
type: reinforcement-learning
|
|
@@ -1932,10 +1932,10 @@ model-index:
|
|
| 1932 |
type: metaworld-handle-press-side
|
| 1933 |
metrics:
|
| 1934 |
- type: total_reward
|
| 1935 |
-
value:
|
| 1936 |
name: Total reward
|
| 1937 |
- type: expert_normalized_total_reward
|
| 1938 |
-
value: 0.
|
| 1939 |
name: Expert normalized total reward
|
| 1940 |
- task:
|
| 1941 |
type: reinforcement-learning
|
|
@@ -1945,10 +1945,10 @@ model-index:
|
|
| 1945 |
type: metaworld-handle-press
|
| 1946 |
metrics:
|
| 1947 |
- type: total_reward
|
| 1948 |
-
value:
|
| 1949 |
name: Total reward
|
| 1950 |
- type: expert_normalized_total_reward
|
| 1951 |
-
value: 0.
|
| 1952 |
name: Expert normalized total reward
|
| 1953 |
- task:
|
| 1954 |
type: reinforcement-learning
|
|
@@ -1958,10 +1958,10 @@ model-index:
|
|
| 1958 |
type: metaworld-handle-pull-side
|
| 1959 |
metrics:
|
| 1960 |
- type: total_reward
|
| 1961 |
-
value:
|
| 1962 |
name: Total reward
|
| 1963 |
- type: expert_normalized_total_reward
|
| 1964 |
-
value: 0.
|
| 1965 |
name: Expert normalized total reward
|
| 1966 |
- task:
|
| 1967 |
type: reinforcement-learning
|
|
@@ -1971,10 +1971,10 @@ model-index:
|
|
| 1971 |
type: metaworld-handle-pull
|
| 1972 |
metrics:
|
| 1973 |
- type: total_reward
|
| 1974 |
-
value:
|
| 1975 |
name: Total reward
|
| 1976 |
- type: expert_normalized_total_reward
|
| 1977 |
-
value: 0.
|
| 1978 |
name: Expert normalized total reward
|
| 1979 |
- task:
|
| 1980 |
type: reinforcement-learning
|
|
@@ -1984,10 +1984,10 @@ model-index:
|
|
| 1984 |
type: metaworld-lever-pull
|
| 1985 |
metrics:
|
| 1986 |
- type: total_reward
|
| 1987 |
-
value: 250.
|
| 1988 |
name: Total reward
|
| 1989 |
- type: expert_normalized_total_reward
|
| 1990 |
-
value: 0.34 +/- 0.
|
| 1991 |
name: Expert normalized total reward
|
| 1992 |
- task:
|
| 1993 |
type: reinforcement-learning
|
|
@@ -1997,10 +1997,10 @@ model-index:
|
|
| 1997 |
type: metaworld-peg-insert-side
|
| 1998 |
metrics:
|
| 1999 |
- type: total_reward
|
| 2000 |
-
value:
|
| 2001 |
name: Total reward
|
| 2002 |
- type: expert_normalized_total_reward
|
| 2003 |
-
value: 0.
|
| 2004 |
name: Expert normalized total reward
|
| 2005 |
- task:
|
| 2006 |
type: reinforcement-learning
|
|
@@ -2010,10 +2010,10 @@ model-index:
|
|
| 2010 |
type: metaworld-peg-unplug-side
|
| 2011 |
metrics:
|
| 2012 |
- type: total_reward
|
| 2013 |
-
value:
|
| 2014 |
name: Total reward
|
| 2015 |
- type: expert_normalized_total_reward
|
| 2016 |
-
value: 0.
|
| 2017 |
name: Expert normalized total reward
|
| 2018 |
- task:
|
| 2019 |
type: reinforcement-learning
|
|
@@ -2036,10 +2036,10 @@ model-index:
|
|
| 2036 |
type: metaworld-pick-place-wall
|
| 2037 |
metrics:
|
| 2038 |
- type: total_reward
|
| 2039 |
-
value:
|
| 2040 |
name: Total reward
|
| 2041 |
- type: expert_normalized_total_reward
|
| 2042 |
-
value: 0.
|
| 2043 |
name: Expert normalized total reward
|
| 2044 |
- task:
|
| 2045 |
type: reinforcement-learning
|
|
@@ -2049,10 +2049,10 @@ model-index:
|
|
| 2049 |
type: metaworld-pick-place
|
| 2050 |
metrics:
|
| 2051 |
- type: total_reward
|
| 2052 |
-
value:
|
| 2053 |
name: Total reward
|
| 2054 |
- type: expert_normalized_total_reward
|
| 2055 |
-
value: 0.
|
| 2056 |
name: Expert normalized total reward
|
| 2057 |
- task:
|
| 2058 |
type: reinforcement-learning
|
|
@@ -2062,10 +2062,10 @@ model-index:
|
|
| 2062 |
type: metaworld-plate-slide-back-side
|
| 2063 |
metrics:
|
| 2064 |
- type: total_reward
|
| 2065 |
-
value:
|
| 2066 |
name: Total reward
|
| 2067 |
- type: expert_normalized_total_reward
|
| 2068 |
-
value: 0.
|
| 2069 |
name: Expert normalized total reward
|
| 2070 |
- task:
|
| 2071 |
type: reinforcement-learning
|
|
@@ -2075,7 +2075,7 @@ model-index:
|
|
| 2075 |
type: metaworld-plate-slide-back
|
| 2076 |
metrics:
|
| 2077 |
- type: total_reward
|
| 2078 |
-
value:
|
| 2079 |
name: Total reward
|
| 2080 |
- type: expert_normalized_total_reward
|
| 2081 |
value: 0.24 +/- 0.00
|
|
@@ -2088,7 +2088,7 @@ model-index:
|
|
| 2088 |
type: metaworld-plate-slide-side
|
| 2089 |
metrics:
|
| 2090 |
- type: total_reward
|
| 2091 |
-
value: 122.
|
| 2092 |
name: Total reward
|
| 2093 |
- type: expert_normalized_total_reward
|
| 2094 |
value: 0.16 +/- 0.04
|
|
@@ -2101,10 +2101,10 @@ model-index:
|
|
| 2101 |
type: metaworld-plate-slide
|
| 2102 |
metrics:
|
| 2103 |
- type: total_reward
|
| 2104 |
-
value:
|
| 2105 |
name: Total reward
|
| 2106 |
- type: expert_normalized_total_reward
|
| 2107 |
-
value: 0.
|
| 2108 |
name: Expert normalized total reward
|
| 2109 |
- task:
|
| 2110 |
type: reinforcement-learning
|
|
@@ -2114,10 +2114,10 @@ model-index:
|
|
| 2114 |
type: metaworld-push-back
|
| 2115 |
metrics:
|
| 2116 |
- type: total_reward
|
| 2117 |
-
value:
|
| 2118 |
name: Total reward
|
| 2119 |
- type: expert_normalized_total_reward
|
| 2120 |
-
value:
|
| 2121 |
name: Expert normalized total reward
|
| 2122 |
- task:
|
| 2123 |
type: reinforcement-learning
|
|
@@ -2127,10 +2127,10 @@ model-index:
|
|
| 2127 |
type: metaworld-push-wall
|
| 2128 |
metrics:
|
| 2129 |
- type: total_reward
|
| 2130 |
-
value:
|
| 2131 |
name: Total reward
|
| 2132 |
- type: expert_normalized_total_reward
|
| 2133 |
-
value: 0.
|
| 2134 |
name: Expert normalized total reward
|
| 2135 |
- task:
|
| 2136 |
type: reinforcement-learning
|
|
@@ -2140,10 +2140,10 @@ model-index:
|
|
| 2140 |
type: metaworld-push
|
| 2141 |
metrics:
|
| 2142 |
- type: total_reward
|
| 2143 |
-
value:
|
| 2144 |
name: Total reward
|
| 2145 |
- type: expert_normalized_total_reward
|
| 2146 |
-
value: 0.
|
| 2147 |
name: Expert normalized total reward
|
| 2148 |
- task:
|
| 2149 |
type: reinforcement-learning
|
|
@@ -2153,10 +2153,10 @@ model-index:
|
|
| 2153 |
type: metaworld-reach-wall
|
| 2154 |
metrics:
|
| 2155 |
- type: total_reward
|
| 2156 |
-
value:
|
| 2157 |
name: Total reward
|
| 2158 |
- type: expert_normalized_total_reward
|
| 2159 |
-
value: 0.
|
| 2160 |
name: Expert normalized total reward
|
| 2161 |
- task:
|
| 2162 |
type: reinforcement-learning
|
|
@@ -2166,10 +2166,10 @@ model-index:
|
|
| 2166 |
type: metaworld-reach
|
| 2167 |
metrics:
|
| 2168 |
- type: total_reward
|
| 2169 |
-
value:
|
| 2170 |
name: Total reward
|
| 2171 |
- type: expert_normalized_total_reward
|
| 2172 |
-
value: 0.
|
| 2173 |
name: Expert normalized total reward
|
| 2174 |
- task:
|
| 2175 |
type: reinforcement-learning
|
|
@@ -2179,10 +2179,10 @@ model-index:
|
|
| 2179 |
type: metaworld-shelf-place
|
| 2180 |
metrics:
|
| 2181 |
- type: total_reward
|
| 2182 |
-
value:
|
| 2183 |
name: Total reward
|
| 2184 |
- type: expert_normalized_total_reward
|
| 2185 |
-
value: 0.
|
| 2186 |
name: Expert normalized total reward
|
| 2187 |
- task:
|
| 2188 |
type: reinforcement-learning
|
|
@@ -2192,10 +2192,10 @@ model-index:
|
|
| 2192 |
type: metaworld-soccer
|
| 2193 |
metrics:
|
| 2194 |
- type: total_reward
|
| 2195 |
-
value:
|
| 2196 |
name: Total reward
|
| 2197 |
- type: expert_normalized_total_reward
|
| 2198 |
-
value: 0.
|
| 2199 |
name: Expert normalized total reward
|
| 2200 |
- task:
|
| 2201 |
type: reinforcement-learning
|
|
@@ -2205,10 +2205,10 @@ model-index:
|
|
| 2205 |
type: metaworld-stick-pull
|
| 2206 |
metrics:
|
| 2207 |
- type: total_reward
|
| 2208 |
-
value:
|
| 2209 |
name: Total reward
|
| 2210 |
- type: expert_normalized_total_reward
|
| 2211 |
-
value: 0.
|
| 2212 |
name: Expert normalized total reward
|
| 2213 |
- task:
|
| 2214 |
type: reinforcement-learning
|
|
@@ -2218,10 +2218,10 @@ model-index:
|
|
| 2218 |
type: metaworld-stick-push
|
| 2219 |
metrics:
|
| 2220 |
- type: total_reward
|
| 2221 |
-
value:
|
| 2222 |
name: Total reward
|
| 2223 |
- type: expert_normalized_total_reward
|
| 2224 |
-
value: 0.
|
| 2225 |
name: Expert normalized total reward
|
| 2226 |
- task:
|
| 2227 |
type: reinforcement-learning
|
|
@@ -2231,10 +2231,10 @@ model-index:
|
|
| 2231 |
type: metaworld-sweep-into
|
| 2232 |
metrics:
|
| 2233 |
- type: total_reward
|
| 2234 |
-
value:
|
| 2235 |
name: Total reward
|
| 2236 |
- type: expert_normalized_total_reward
|
| 2237 |
-
value: 0.
|
| 2238 |
name: Expert normalized total reward
|
| 2239 |
- task:
|
| 2240 |
type: reinforcement-learning
|
|
@@ -2244,10 +2244,10 @@ model-index:
|
|
| 2244 |
type: metaworld-sweep
|
| 2245 |
metrics:
|
| 2246 |
- type: total_reward
|
| 2247 |
-
value: 15.
|
| 2248 |
name: Total reward
|
| 2249 |
- type: expert_normalized_total_reward
|
| 2250 |
-
value: 0.01 +/- 0.
|
| 2251 |
name: Expert normalized total reward
|
| 2252 |
- task:
|
| 2253 |
type: reinforcement-learning
|
|
@@ -2257,10 +2257,10 @@ model-index:
|
|
| 2257 |
type: metaworld-window-close
|
| 2258 |
metrics:
|
| 2259 |
- type: total_reward
|
| 2260 |
-
value:
|
| 2261 |
name: Total reward
|
| 2262 |
- type: expert_normalized_total_reward
|
| 2263 |
-
value: 0.
|
| 2264 |
name: Expert normalized total reward
|
| 2265 |
- task:
|
| 2266 |
type: reinforcement-learning
|
|
@@ -2270,10 +2270,10 @@ model-index:
|
|
| 2270 |
type: metaworld-window-open
|
| 2271 |
metrics:
|
| 2272 |
- type: total_reward
|
| 2273 |
-
value:
|
| 2274 |
name: Total reward
|
| 2275 |
- type: expert_normalized_total_reward
|
| 2276 |
-
value:
|
| 2277 |
name: Expert normalized total reward
|
| 2278 |
- task:
|
| 2279 |
type: reinforcement-learning
|
|
@@ -2283,10 +2283,10 @@ model-index:
|
|
| 2283 |
type: mujoco-ant
|
| 2284 |
metrics:
|
| 2285 |
- type: total_reward
|
| 2286 |
-
value:
|
| 2287 |
name: Total reward
|
| 2288 |
- type: expert_normalized_total_reward
|
| 2289 |
-
value: 0.
|
| 2290 |
name: Expert normalized total reward
|
| 2291 |
- task:
|
| 2292 |
type: reinforcement-learning
|
|
@@ -2296,10 +2296,10 @@ model-index:
|
|
| 2296 |
type: mujoco-doublependulum
|
| 2297 |
metrics:
|
| 2298 |
- type: total_reward
|
| 2299 |
-
value:
|
| 2300 |
name: Total reward
|
| 2301 |
- type: expert_normalized_total_reward
|
| 2302 |
-
value: 0.
|
| 2303 |
name: Expert normalized total reward
|
| 2304 |
- task:
|
| 2305 |
type: reinforcement-learning
|
|
@@ -2309,10 +2309,10 @@ model-index:
|
|
| 2309 |
type: mujoco-halfcheetah
|
| 2310 |
metrics:
|
| 2311 |
- type: total_reward
|
| 2312 |
-
value:
|
| 2313 |
name: Total reward
|
| 2314 |
- type: expert_normalized_total_reward
|
| 2315 |
-
value: 0.
|
| 2316 |
name: Expert normalized total reward
|
| 2317 |
- task:
|
| 2318 |
type: reinforcement-learning
|
|
@@ -2322,10 +2322,10 @@ model-index:
|
|
| 2322 |
type: mujoco-hopper
|
| 2323 |
metrics:
|
| 2324 |
- type: total_reward
|
| 2325 |
-
value:
|
| 2326 |
name: Total reward
|
| 2327 |
- type: expert_normalized_total_reward
|
| 2328 |
-
value: 0.
|
| 2329 |
name: Expert normalized total reward
|
| 2330 |
- task:
|
| 2331 |
type: reinforcement-learning
|
|
@@ -2335,7 +2335,7 @@ model-index:
|
|
| 2335 |
type: mujoco-humanoid
|
| 2336 |
metrics:
|
| 2337 |
- type: total_reward
|
| 2338 |
-
value:
|
| 2339 |
name: Total reward
|
| 2340 |
- type: expert_normalized_total_reward
|
| 2341 |
value: 0.09 +/- 0.02
|
|
@@ -2348,10 +2348,10 @@ model-index:
|
|
| 2348 |
type: mujoco-pendulum
|
| 2349 |
metrics:
|
| 2350 |
- type: total_reward
|
| 2351 |
-
value:
|
| 2352 |
name: Total reward
|
| 2353 |
- type: expert_normalized_total_reward
|
| 2354 |
-
value: 0.
|
| 2355 |
name: Expert normalized total reward
|
| 2356 |
- task:
|
| 2357 |
type: reinforcement-learning
|
|
@@ -2361,10 +2361,10 @@ model-index:
|
|
| 2361 |
type: mujoco-pusher
|
| 2362 |
metrics:
|
| 2363 |
- type: total_reward
|
| 2364 |
-
value: -
|
| 2365 |
name: Total reward
|
| 2366 |
- type: expert_normalized_total_reward
|
| 2367 |
-
value:
|
| 2368 |
name: Expert normalized total reward
|
| 2369 |
- task:
|
| 2370 |
type: reinforcement-learning
|
|
@@ -2374,10 +2374,10 @@ model-index:
|
|
| 2374 |
type: mujoco-reacher
|
| 2375 |
metrics:
|
| 2376 |
- type: total_reward
|
| 2377 |
-
value: -
|
| 2378 |
name: Total reward
|
| 2379 |
- type: expert_normalized_total_reward
|
| 2380 |
-
value:
|
| 2381 |
name: Expert normalized total reward
|
| 2382 |
- task:
|
| 2383 |
type: reinforcement-learning
|
|
@@ -2387,10 +2387,10 @@ model-index:
|
|
| 2387 |
type: mujoco-standup
|
| 2388 |
metrics:
|
| 2389 |
- type: total_reward
|
| 2390 |
-
value:
|
| 2391 |
name: Total reward
|
| 2392 |
- type: expert_normalized_total_reward
|
| 2393 |
-
value: 0.
|
| 2394 |
name: Expert normalized total reward
|
| 2395 |
- task:
|
| 2396 |
type: reinforcement-learning
|
|
@@ -2400,10 +2400,10 @@ model-index:
|
|
| 2400 |
type: mujoco-swimmer
|
| 2401 |
metrics:
|
| 2402 |
- type: total_reward
|
| 2403 |
-
value:
|
| 2404 |
name: Total reward
|
| 2405 |
- type: expert_normalized_total_reward
|
| 2406 |
-
value: 1.
|
| 2407 |
name: Expert normalized total reward
|
| 2408 |
- task:
|
| 2409 |
type: reinforcement-learning
|
|
@@ -2413,10 +2413,10 @@ model-index:
|
|
| 2413 |
type: mujoco-walker
|
| 2414 |
metrics:
|
| 2415 |
- type: total_reward
|
| 2416 |
-
value:
|
| 2417 |
name: Total reward
|
| 2418 |
- type: expert_normalized_total_reward
|
| 2419 |
-
value:
|
| 2420 |
name: Expert normalized total reward
|
| 2421 |
---
|
| 2422 |
|
|
@@ -2440,7 +2440,8 @@ This is a multi-modal and multi-task model.
|
|
| 2440 |
## Training
|
| 2441 |
|
| 2442 |
<details>
|
| 2443 |
-
|
|
|
|
| 2444 |
- Alien
|
| 2445 |
- Amidar
|
| 2446 |
- Assault
|
|
@@ -2610,4 +2611,3 @@ from transformers import AutoModelForCausalLM
|
|
| 2610 |
|
| 2611 |
model = AutoModelForCausalLM.from_pretrained("jat-project/jat")
|
| 2612 |
```
|
| 2613 |
-
|
|
|
|
| 174 |
value: 0.14 [0.14, 0.15]
|
| 175 |
name: IQM expert normalized total reward
|
| 176 |
- type: iqm_human_normalized_total_reward
|
| 177 |
+
value: 0.38 [0.37, 0.39]
|
| 178 |
name: IQM human normalized total reward
|
| 179 |
- task:
|
| 180 |
type: reinforcement-learning
|
|
|
|
| 194 |
type: metaworld
|
| 195 |
metrics:
|
| 196 |
- type: iqm_expert_normalized_total_reward
|
| 197 |
+
value: 0.65 [0.64, 0.67]
|
| 198 |
name: IQM expert normalized total reward
|
| 199 |
- task:
|
| 200 |
type: reinforcement-learning
|
|
|
|
| 204 |
type: mujoco
|
| 205 |
metrics:
|
| 206 |
- type: iqm_expert_normalized_total_reward
|
| 207 |
+
value: 0.85 [0.83, 0.86]
|
| 208 |
name: IQM expert normalized total reward
|
| 209 |
- task:
|
| 210 |
type: reinforcement-learning
|
|
|
|
| 214 |
type: atari-alien
|
| 215 |
metrics:
|
| 216 |
- type: total_reward
|
| 217 |
+
value: 1518.70 +/- 568.14
|
| 218 |
name: Total reward
|
| 219 |
- type: expert_normalized_total_reward
|
| 220 |
+
value: 0.08 +/- 0.03
|
| 221 |
name: Expert normalized total reward
|
| 222 |
- type: human_normalized_total_reward
|
| 223 |
+
value: 0.19 +/- 0.08
|
| 224 |
name: Human normalized total reward
|
| 225 |
- task:
|
| 226 |
type: reinforcement-learning
|
|
|
|
| 230 |
type: atari-amidar
|
| 231 |
metrics:
|
| 232 |
- type: total_reward
|
| 233 |
+
value: 89.17 +/- 78.73
|
| 234 |
name: Total reward
|
| 235 |
- type: expert_normalized_total_reward
|
| 236 |
+
value: 0.04 +/- 0.04
|
| 237 |
name: Expert normalized total reward
|
| 238 |
- type: human_normalized_total_reward
|
| 239 |
+
value: 0.05 +/- 0.05
|
| 240 |
name: Human normalized total reward
|
| 241 |
- task:
|
| 242 |
type: reinforcement-learning
|
|
|
|
| 246 |
type: atari-assault
|
| 247 |
metrics:
|
| 248 |
- type: total_reward
|
| 249 |
+
value: 1676.91 +/- 780.73
|
| 250 |
name: Total reward
|
| 251 |
- type: expert_normalized_total_reward
|
| 252 |
value: 0.09 +/- 0.05
|
| 253 |
name: Expert normalized total reward
|
| 254 |
- type: human_normalized_total_reward
|
| 255 |
+
value: 2.80 +/- 1.50
|
| 256 |
name: Human normalized total reward
|
| 257 |
- task:
|
| 258 |
type: reinforcement-learning
|
|
|
|
| 262 |
type: atari-asterix
|
| 263 |
metrics:
|
| 264 |
- type: total_reward
|
| 265 |
+
value: 844.50 +/- 546.85
|
| 266 |
name: Total reward
|
| 267 |
- type: expert_normalized_total_reward
|
| 268 |
+
value: 0.18 +/- 0.16
|
| 269 |
name: Expert normalized total reward
|
| 270 |
- type: human_normalized_total_reward
|
| 271 |
+
value: 0.08 +/- 0.07
|
| 272 |
name: Human normalized total reward
|
| 273 |
- task:
|
| 274 |
type: reinforcement-learning
|
|
|
|
| 278 |
type: atari-asteroids
|
| 279 |
metrics:
|
| 280 |
- type: total_reward
|
| 281 |
+
value: 1357.90 +/- 453.01
|
| 282 |
name: Total reward
|
| 283 |
- type: expert_normalized_total_reward
|
| 284 |
value: 0.00 +/- 0.00
|
|
|
|
| 294 |
type: atari-atlantis
|
| 295 |
metrics:
|
| 296 |
- type: total_reward
|
| 297 |
+
value: 51843.00 +/- 123857.07
|
| 298 |
name: Total reward
|
| 299 |
- type: expert_normalized_total_reward
|
| 300 |
+
value: 0.13 +/- 0.40
|
| 301 |
name: Expert normalized total reward
|
| 302 |
- type: human_normalized_total_reward
|
| 303 |
+
value: 2.41 +/- 7.66
|
| 304 |
name: Human normalized total reward
|
| 305 |
- task:
|
| 306 |
type: reinforcement-learning
|
|
|
|
| 310 |
type: atari-bankheist
|
| 311 |
metrics:
|
| 312 |
- type: total_reward
|
| 313 |
+
value: 977.80 +/- 156.49
|
| 314 |
name: Total reward
|
| 315 |
- type: expert_normalized_total_reward
|
| 316 |
+
value: 0.74 +/- 0.12
|
| 317 |
name: Expert normalized total reward
|
| 318 |
- type: human_normalized_total_reward
|
| 319 |
+
value: 1.30 +/- 0.21
|
| 320 |
name: Human normalized total reward
|
| 321 |
- task:
|
| 322 |
type: reinforcement-learning
|
|
|
|
| 326 |
type: atari-battlezone
|
| 327 |
metrics:
|
| 328 |
- type: total_reward
|
| 329 |
+
value: 16780.00 +/- 6926.15
|
| 330 |
name: Total reward
|
| 331 |
- type: expert_normalized_total_reward
|
| 332 |
value: 0.06 +/- 0.02
|
| 333 |
name: Expert normalized total reward
|
| 334 |
- type: human_normalized_total_reward
|
| 335 |
+
value: 0.45 +/- 0.19
|
| 336 |
name: Human normalized total reward
|
| 337 |
- task:
|
| 338 |
type: reinforcement-learning
|
|
|
|
| 342 |
type: atari-beamrider
|
| 343 |
metrics:
|
| 344 |
- type: total_reward
|
| 345 |
+
value: 768.36 +/- 364.06
|
| 346 |
name: Total reward
|
| 347 |
- type: expert_normalized_total_reward
|
| 348 |
value: 0.01 +/- 0.01
|
| 349 |
name: Expert normalized total reward
|
| 350 |
- type: human_normalized_total_reward
|
| 351 |
+
value: 0.02 +/- 0.02
|
| 352 |
name: Human normalized total reward
|
| 353 |
- task:
|
| 354 |
type: reinforcement-learning
|
|
|
|
| 358 |
type: atari-berzerk
|
| 359 |
metrics:
|
| 360 |
- type: total_reward
|
| 361 |
+
value: 616.20 +/- 296.08
|
| 362 |
name: Total reward
|
| 363 |
- type: expert_normalized_total_reward
|
| 364 |
value: 0.01 +/- 0.01
|
| 365 |
name: Expert normalized total reward
|
| 366 |
- type: human_normalized_total_reward
|
| 367 |
+
value: 0.20 +/- 0.12
|
| 368 |
name: Human normalized total reward
|
| 369 |
- task:
|
| 370 |
type: reinforcement-learning
|
|
|
|
| 374 |
type: atari-bowling
|
| 375 |
metrics:
|
| 376 |
- type: total_reward
|
| 377 |
+
value: 22.32 +/- 5.18
|
| 378 |
name: Total reward
|
| 379 |
- type: expert_normalized_total_reward
|
| 380 |
value: 1.00 +/- 0.00
|
|
|
|
| 390 |
type: atari-boxing
|
| 391 |
metrics:
|
| 392 |
- type: total_reward
|
| 393 |
+
value: 92.31 +/- 18.24
|
| 394 |
name: Total reward
|
| 395 |
- type: expert_normalized_total_reward
|
| 396 |
+
value: 0.94 +/- 0.19
|
| 397 |
name: Expert normalized total reward
|
| 398 |
- type: human_normalized_total_reward
|
| 399 |
+
value: 7.68 +/- 1.52
|
| 400 |
name: Human normalized total reward
|
| 401 |
- task:
|
| 402 |
type: reinforcement-learning
|
|
|
|
| 406 |
type: atari-breakout
|
| 407 |
metrics:
|
| 408 |
- type: total_reward
|
| 409 |
+
value: 7.93 +/- 5.66
|
| 410 |
name: Total reward
|
| 411 |
- type: expert_normalized_total_reward
|
| 412 |
value: 0.01 +/- 0.01
|
| 413 |
name: Expert normalized total reward
|
| 414 |
- type: human_normalized_total_reward
|
| 415 |
+
value: 0.22 +/- 0.20
|
| 416 |
name: Human normalized total reward
|
| 417 |
- task:
|
| 418 |
type: reinforcement-learning
|
|
|
|
| 422 |
type: atari-centipede
|
| 423 |
metrics:
|
| 424 |
- type: total_reward
|
| 425 |
+
value: 5888.27 +/- 2594.62
|
| 426 |
name: Total reward
|
| 427 |
- type: expert_normalized_total_reward
|
| 428 |
+
value: 0.40 +/- 0.27
|
| 429 |
name: Expert normalized total reward
|
| 430 |
- type: human_normalized_total_reward
|
| 431 |
+
value: 0.38 +/- 0.26
|
| 432 |
name: Human normalized total reward
|
| 433 |
- task:
|
| 434 |
type: reinforcement-learning
|
|
|
|
| 438 |
type: atari-choppercommand
|
| 439 |
metrics:
|
| 440 |
- type: total_reward
|
| 441 |
+
value: 2371.00 +/- 1195.43
|
| 442 |
name: Total reward
|
| 443 |
- type: expert_normalized_total_reward
|
| 444 |
+
value: 0.02 +/- 0.01
|
| 445 |
name: Expert normalized total reward
|
| 446 |
- type: human_normalized_total_reward
|
| 447 |
+
value: 0.24 +/- 0.18
|
| 448 |
name: Human normalized total reward
|
| 449 |
- task:
|
| 450 |
type: reinforcement-learning
|
|
|
|
| 454 |
type: atari-crazyclimber
|
| 455 |
metrics:
|
| 456 |
- type: total_reward
|
| 457 |
+
value: 97145.00 +/- 30388.04
|
| 458 |
name: Total reward
|
| 459 |
- type: expert_normalized_total_reward
|
| 460 |
+
value: 0.51 +/- 0.18
|
| 461 |
name: Expert normalized total reward
|
| 462 |
- type: human_normalized_total_reward
|
| 463 |
+
value: 3.45 +/- 1.21
|
| 464 |
name: Human normalized total reward
|
| 465 |
- task:
|
| 466 |
type: reinforcement-learning
|
|
|
|
| 470 |
type: atari-defender
|
| 471 |
metrics:
|
| 472 |
- type: total_reward
|
| 473 |
+
value: 39317.50 +/- 16246.15
|
| 474 |
name: Total reward
|
| 475 |
- type: expert_normalized_total_reward
|
| 476 |
+
value: 0.10 +/- 0.05
|
| 477 |
name: Expert normalized total reward
|
| 478 |
- type: human_normalized_total_reward
|
| 479 |
+
value: 2.30 +/- 1.03
|
| 480 |
name: Human normalized total reward
|
| 481 |
- task:
|
| 482 |
type: reinforcement-learning
|
|
|
|
| 486 |
type: atari-demonattack
|
| 487 |
metrics:
|
| 488 |
- type: total_reward
|
| 489 |
+
value: 795.10 +/- 982.55
|
| 490 |
name: Total reward
|
| 491 |
- type: expert_normalized_total_reward
|
| 492 |
value: 0.01 +/- 0.01
|
| 493 |
name: Expert normalized total reward
|
| 494 |
- type: human_normalized_total_reward
|
| 495 |
+
value: 0.35 +/- 0.54
|
| 496 |
name: Human normalized total reward
|
| 497 |
- task:
|
| 498 |
type: reinforcement-learning
|
|
|
|
| 502 |
type: atari-doubledunk
|
| 503 |
metrics:
|
| 504 |
- type: total_reward
|
| 505 |
+
value: 13.40 +/- 11.07
|
| 506 |
name: Total reward
|
| 507 |
- type: expert_normalized_total_reward
|
| 508 |
+
value: 0.81 +/- 0.28
|
| 509 |
name: Expert normalized total reward
|
| 510 |
- type: human_normalized_total_reward
|
| 511 |
+
value: 0.91 +/- 0.32
|
| 512 |
name: Human normalized total reward
|
| 513 |
- task:
|
| 514 |
type: reinforcement-learning
|
|
|
|
| 518 |
type: atari-enduro
|
| 519 |
metrics:
|
| 520 |
- type: total_reward
|
| 521 |
+
value: 103.11 +/- 28.05
|
| 522 |
name: Total reward
|
| 523 |
- type: expert_normalized_total_reward
|
| 524 |
+
value: 0.04 +/- 0.01
|
| 525 |
name: Expert normalized total reward
|
| 526 |
- type: human_normalized_total_reward
|
| 527 |
+
value: 0.12 +/- 0.03
|
| 528 |
name: Human normalized total reward
|
| 529 |
- task:
|
| 530 |
type: reinforcement-learning
|
|
|
|
| 534 |
type: atari-fishingderby
|
| 535 |
metrics:
|
| 536 |
- type: total_reward
|
| 537 |
+
value: -31.67 +/- 22.54
|
| 538 |
name: Total reward
|
| 539 |
- type: expert_normalized_total_reward
|
| 540 |
+
value: 0.61 +/- 0.23
|
| 541 |
name: Expert normalized total reward
|
| 542 |
- type: human_normalized_total_reward
|
| 543 |
+
value: 0.46 +/- 0.17
|
| 544 |
name: Human normalized total reward
|
| 545 |
- task:
|
| 546 |
type: reinforcement-learning
|
|
|
|
| 550 |
type: atari-freeway
|
| 551 |
metrics:
|
| 552 |
- type: total_reward
|
| 553 |
+
value: 27.57 +/- 1.87
|
| 554 |
name: Total reward
|
| 555 |
- type: expert_normalized_total_reward
|
| 556 |
+
value: 0.81 +/- 0.06
|
| 557 |
name: Expert normalized total reward
|
| 558 |
- type: human_normalized_total_reward
|
| 559 |
value: 0.93 +/- 0.06
|
|
|
|
| 566 |
type: atari-frostbite
|
| 567 |
metrics:
|
| 568 |
- type: total_reward
|
| 569 |
+
value: 2875.60 +/- 1679.84
|
| 570 |
name: Total reward
|
| 571 |
- type: expert_normalized_total_reward
|
| 572 |
+
value: 0.21 +/- 0.13
|
| 573 |
name: Expert normalized total reward
|
| 574 |
- type: human_normalized_total_reward
|
| 575 |
+
value: 0.66 +/- 0.39
|
| 576 |
name: Human normalized total reward
|
| 577 |
- task:
|
| 578 |
type: reinforcement-learning
|
|
|
|
| 582 |
type: atari-gopher
|
| 583 |
metrics:
|
| 584 |
- type: total_reward
|
| 585 |
+
value: 5508.80 +/- 2802.03
|
| 586 |
name: Total reward
|
| 587 |
- type: expert_normalized_total_reward
|
| 588 |
value: 0.06 +/- 0.03
|
| 589 |
name: Expert normalized total reward
|
| 590 |
- type: human_normalized_total_reward
|
| 591 |
+
value: 2.44 +/- 1.30
|
| 592 |
name: Human normalized total reward
|
| 593 |
- task:
|
| 594 |
type: reinforcement-learning
|
|
|
|
| 598 |
type: atari-gravitar
|
| 599 |
metrics:
|
| 600 |
- type: total_reward
|
| 601 |
+
value: 1330.50 +/- 918.23
|
| 602 |
name: Total reward
|
| 603 |
- type: expert_normalized_total_reward
|
| 604 |
+
value: 0.30 +/- 0.24
|
| 605 |
name: Expert normalized total reward
|
| 606 |
- type: human_normalized_total_reward
|
| 607 |
+
value: 0.36 +/- 0.29
|
| 608 |
name: Human normalized total reward
|
| 609 |
- task:
|
| 610 |
type: reinforcement-learning
|
|
|
|
| 614 |
type: atari-hero
|
| 615 |
metrics:
|
| 616 |
- type: total_reward
|
| 617 |
+
value: 11932.00 +/- 3036.87
|
| 618 |
name: Total reward
|
| 619 |
- type: expert_normalized_total_reward
|
| 620 |
+
value: 0.25 +/- 0.07
|
| 621 |
name: Expert normalized total reward
|
| 622 |
- type: human_normalized_total_reward
|
| 623 |
+
value: 0.37 +/- 0.10
|
| 624 |
name: Human normalized total reward
|
| 625 |
- task:
|
| 626 |
type: reinforcement-learning
|
|
|
|
| 630 |
type: atari-icehockey
|
| 631 |
metrics:
|
| 632 |
- type: total_reward
|
| 633 |
+
value: 7.61 +/- 5.28
|
| 634 |
name: Total reward
|
| 635 |
- type: expert_normalized_total_reward
|
| 636 |
+
value: 0.52 +/- 0.15
|
| 637 |
name: Expert normalized total reward
|
| 638 |
- type: human_normalized_total_reward
|
| 639 |
+
value: 1.55 +/- 0.44
|
| 640 |
name: Human normalized total reward
|
| 641 |
- task:
|
| 642 |
type: reinforcement-learning
|
|
|
|
| 646 |
type: atari-jamesbond
|
| 647 |
metrics:
|
| 648 |
- type: total_reward
|
| 649 |
+
value: 425.00 +/- 632.51
|
| 650 |
name: Total reward
|
| 651 |
- type: expert_normalized_total_reward
|
| 652 |
+
value: 0.01 +/- 0.02
|
| 653 |
name: Expert normalized total reward
|
| 654 |
- type: human_normalized_total_reward
|
| 655 |
+
value: 1.45 +/- 2.31
|
| 656 |
name: Human normalized total reward
|
| 657 |
- task:
|
| 658 |
type: reinforcement-learning
|
|
|
|
| 662 |
type: atari-kangaroo
|
| 663 |
metrics:
|
| 664 |
- type: total_reward
|
| 665 |
+
value: 375.00 +/- 314.13
|
| 666 |
name: Total reward
|
| 667 |
- type: expert_normalized_total_reward
|
| 668 |
+
value: 0.62 +/- 0.60
|
| 669 |
name: Expert normalized total reward
|
| 670 |
- type: human_normalized_total_reward
|
| 671 |
+
value: 0.11 +/- 0.11
|
| 672 |
name: Human normalized total reward
|
| 673 |
- task:
|
| 674 |
type: reinforcement-learning
|
|
|
|
| 678 |
type: atari-krull
|
| 679 |
metrics:
|
| 680 |
- type: total_reward
|
| 681 |
+
value: 10743.30 +/- 1311.26
|
| 682 |
name: Total reward
|
| 683 |
- type: expert_normalized_total_reward
|
| 684 |
value: 0.93 +/- 0.13
|
| 685 |
name: Expert normalized total reward
|
| 686 |
- type: human_normalized_total_reward
|
| 687 |
+
value: 8.57 +/- 1.23
|
| 688 |
name: Human normalized total reward
|
| 689 |
- task:
|
| 690 |
type: reinforcement-learning
|
|
|
|
| 694 |
type: atari-kungfumaster
|
| 695 |
metrics:
|
| 696 |
- type: total_reward
|
| 697 |
+
value: 253.00 +/- 233.86
|
| 698 |
name: Total reward
|
| 699 |
- type: expert_normalized_total_reward
|
| 700 |
+
value: -0.00 +/- 0.01
|
| 701 |
name: Expert normalized total reward
|
| 702 |
- type: human_normalized_total_reward
|
| 703 |
+
value: -0.00 +/- 0.01
|
| 704 |
name: Human normalized total reward
|
| 705 |
- task:
|
| 706 |
type: reinforcement-learning
|
|
|
|
| 726 |
type: atari-mspacman
|
| 727 |
metrics:
|
| 728 |
- type: total_reward
|
| 729 |
+
value: 1610.10 +/- 504.08
|
| 730 |
name: Total reward
|
| 731 |
- type: expert_normalized_total_reward
|
| 732 |
+
value: 0.20 +/- 0.08
|
| 733 |
name: Expert normalized total reward
|
| 734 |
- type: human_normalized_total_reward
|
| 735 |
+
value: 0.20 +/- 0.08
|
| 736 |
name: Human normalized total reward
|
| 737 |
- task:
|
| 738 |
type: reinforcement-learning
|
|
|
|
| 742 |
type: atari-namethisgame
|
| 743 |
metrics:
|
| 744 |
- type: total_reward
|
| 745 |
+
value: 7726.40 +/- 2166.18
|
| 746 |
name: Total reward
|
| 747 |
- type: expert_normalized_total_reward
|
| 748 |
+
value: 0.26 +/- 0.10
|
| 749 |
name: Expert normalized total reward
|
| 750 |
- type: human_normalized_total_reward
|
| 751 |
+
value: 0.94 +/- 0.38
|
| 752 |
name: Human normalized total reward
|
| 753 |
- task:
|
| 754 |
type: reinforcement-learning
|
|
|
|
| 758 |
type: atari-phoenix
|
| 759 |
metrics:
|
| 760 |
- type: total_reward
|
| 761 |
+
value: 1814.20 +/- 1275.29
|
| 762 |
name: Total reward
|
| 763 |
- type: expert_normalized_total_reward
|
| 764 |
value: 0.00 +/- 0.00
|
| 765 |
name: Expert normalized total reward
|
| 766 |
- type: human_normalized_total_reward
|
| 767 |
+
value: 0.16 +/- 0.20
|
| 768 |
name: Human normalized total reward
|
| 769 |
- task:
|
| 770 |
type: reinforcement-learning
|
|
|
|
| 774 |
type: atari-pitfall
|
| 775 |
metrics:
|
| 776 |
- type: total_reward
|
| 777 |
+
value: -4.61 +/- 15.86
|
| 778 |
name: Total reward
|
| 779 |
- type: expert_normalized_total_reward
|
| 780 |
+
value: 0.99 +/- 0.07
|
| 781 |
name: Expert normalized total reward
|
| 782 |
- type: human_normalized_total_reward
|
| 783 |
value: 0.03 +/- 0.00
|
|
|
|
| 790 |
type: atari-pong
|
| 791 |
metrics:
|
| 792 |
- type: total_reward
|
| 793 |
+
value: 16.54 +/- 10.34
|
| 794 |
name: Total reward
|
| 795 |
- type: expert_normalized_total_reward
|
| 796 |
+
value: 0.89 +/- 0.25
|
| 797 |
name: Expert normalized total reward
|
| 798 |
- type: human_normalized_total_reward
|
| 799 |
+
value: 1.05 +/- 0.29
|
| 800 |
name: Human normalized total reward
|
| 801 |
- task:
|
| 802 |
type: reinforcement-learning
|
|
|
|
| 822 |
type: atari-qbert
|
| 823 |
metrics:
|
| 824 |
- type: total_reward
|
| 825 |
+
value: 2118.50 +/- 2764.25
|
| 826 |
name: Total reward
|
| 827 |
- type: expert_normalized_total_reward
|
| 828 |
+
value: 0.05 +/- 0.06
|
| 829 |
name: Expert normalized total reward
|
| 830 |
- type: human_normalized_total_reward
|
| 831 |
+
value: 0.15 +/- 0.21
|
| 832 |
name: Human normalized total reward
|
| 833 |
- task:
|
| 834 |
type: reinforcement-learning
|
|
|
|
| 838 |
type: atari-riverraid
|
| 839 |
metrics:
|
| 840 |
- type: total_reward
|
| 841 |
+
value: 3925.20 +/- 1530.94
|
| 842 |
name: Total reward
|
| 843 |
- type: expert_normalized_total_reward
|
| 844 |
+
value: 0.19 +/- 0.11
|
| 845 |
name: Expert normalized total reward
|
| 846 |
- type: human_normalized_total_reward
|
| 847 |
+
value: 0.16 +/- 0.10
|
| 848 |
name: Human normalized total reward
|
| 849 |
- task:
|
| 850 |
type: reinforcement-learning
|
|
|
|
| 854 |
type: atari-roadrunner
|
| 855 |
metrics:
|
| 856 |
- type: total_reward
|
| 857 |
+
value: 6929.00 +/- 5577.35
|
| 858 |
name: Total reward
|
| 859 |
- type: expert_normalized_total_reward
|
| 860 |
+
value: 0.09 +/- 0.07
|
| 861 |
name: Expert normalized total reward
|
| 862 |
- type: human_normalized_total_reward
|
| 863 |
+
value: 0.88 +/- 0.71
|
| 864 |
name: Human normalized total reward
|
| 865 |
- task:
|
| 866 |
type: reinforcement-learning
|
|
|
|
| 870 |
type: atari-robotank
|
| 871 |
metrics:
|
| 872 |
- type: total_reward
|
| 873 |
+
value: 10.22 +/- 4.71
|
| 874 |
name: Total reward
|
| 875 |
- type: expert_normalized_total_reward
|
| 876 |
+
value: 0.10 +/- 0.06
|
| 877 |
name: Expert normalized total reward
|
| 878 |
- type: human_normalized_total_reward
|
| 879 |
+
value: 0.83 +/- 0.49
|
| 880 |
name: Human normalized total reward
|
| 881 |
- task:
|
| 882 |
type: reinforcement-learning
|
|
|
|
| 886 |
type: atari-seaquest
|
| 887 |
metrics:
|
| 888 |
- type: total_reward
|
| 889 |
+
value: 859.80 +/- 407.80
|
| 890 |
name: Total reward
|
| 891 |
- type: expert_normalized_total_reward
|
| 892 |
+
value: 0.31 +/- 0.16
|
| 893 |
name: Expert normalized total reward
|
| 894 |
- type: human_normalized_total_reward
|
| 895 |
value: 0.02 +/- 0.01
|
|
|
|
| 902 |
type: atari-skiing
|
| 903 |
metrics:
|
| 904 |
- type: total_reward
|
| 905 |
+
value: -15960.04 +/- 5887.52
|
| 906 |
name: Total reward
|
| 907 |
- type: expert_normalized_total_reward
|
| 908 |
+
value: 0.18 +/- 0.93
|
| 909 |
name: Expert normalized total reward
|
| 910 |
- type: human_normalized_total_reward
|
| 911 |
+
value: 0.09 +/- 0.46
|
| 912 |
name: Human normalized total reward
|
| 913 |
- task:
|
| 914 |
type: reinforcement-learning
|
|
|
|
| 918 |
type: atari-solaris
|
| 919 |
metrics:
|
| 920 |
- type: total_reward
|
| 921 |
+
value: 1202.60 +/- 445.27
|
| 922 |
name: Total reward
|
| 923 |
- type: expert_normalized_total_reward
|
| 924 |
+
value: -0.29 +/- 3.79
|
| 925 |
name: Expert normalized total reward
|
| 926 |
- type: human_normalized_total_reward
|
| 927 |
+
value: -0.00 +/- 0.04
|
| 928 |
name: Human normalized total reward
|
| 929 |
- task:
|
| 930 |
type: reinforcement-learning
|
|
|
|
| 934 |
type: atari-spaceinvaders
|
| 935 |
metrics:
|
| 936 |
- type: total_reward
|
| 937 |
+
value: 326.85 +/- 141.89
|
| 938 |
name: Total reward
|
| 939 |
- type: expert_normalized_total_reward
|
| 940 |
+
value: 0.01 +/- 0.00
|
| 941 |
name: Expert normalized total reward
|
| 942 |
- type: human_normalized_total_reward
|
| 943 |
+
value: 0.12 +/- 0.09
|
| 944 |
name: Human normalized total reward
|
| 945 |
- task:
|
| 946 |
type: reinforcement-learning
|
|
|
|
| 950 |
type: atari-stargunner
|
| 951 |
metrics:
|
| 952 |
- type: total_reward
|
| 953 |
+
value: 5219.00 +/- 3544.03
|
| 954 |
name: Total reward
|
| 955 |
- type: expert_normalized_total_reward
|
| 956 |
value: 0.01 +/- 0.01
|
| 957 |
name: Expert normalized total reward
|
| 958 |
- type: human_normalized_total_reward
|
| 959 |
+
value: 0.48 +/- 0.37
|
| 960 |
name: Human normalized total reward
|
| 961 |
- task:
|
| 962 |
type: reinforcement-learning
|
|
|
|
| 966 |
type: atari-surround
|
| 967 |
metrics:
|
| 968 |
- type: total_reward
|
| 969 |
+
value: 1.52 +/- 4.60
|
| 970 |
name: Total reward
|
| 971 |
- type: expert_normalized_total_reward
|
| 972 |
+
value: 0.59 +/- 0.24
|
| 973 |
name: Expert normalized total reward
|
| 974 |
- type: human_normalized_total_reward
|
| 975 |
+
value: 0.70 +/- 0.28
|
| 976 |
name: Human normalized total reward
|
| 977 |
- task:
|
| 978 |
type: reinforcement-learning
|
|
|
|
| 982 |
type: atari-tennis
|
| 983 |
metrics:
|
| 984 |
- type: total_reward
|
| 985 |
+
value: -12.80 +/- 3.70
|
| 986 |
name: Total reward
|
| 987 |
- type: expert_normalized_total_reward
|
| 988 |
+
value: 0.32 +/- 0.11
|
| 989 |
name: Expert normalized total reward
|
| 990 |
- type: human_normalized_total_reward
|
| 991 |
+
value: 0.34 +/- 0.12
|
| 992 |
name: Human normalized total reward
|
| 993 |
- task:
|
| 994 |
type: reinforcement-learning
|
|
|
|
| 998 |
type: atari-timepilot
|
| 999 |
metrics:
|
| 1000 |
- type: total_reward
|
| 1001 |
+
value: 11603.00 +/- 4323.25
|
| 1002 |
name: Total reward
|
| 1003 |
- type: expert_normalized_total_reward
|
| 1004 |
+
value: 0.12 +/- 0.07
|
| 1005 |
name: Expert normalized total reward
|
| 1006 |
- type: human_normalized_total_reward
|
| 1007 |
+
value: 4.84 +/- 2.60
|
| 1008 |
name: Human normalized total reward
|
| 1009 |
- task:
|
| 1010 |
type: reinforcement-learning
|
|
|
|
| 1014 |
type: atari-tutankham
|
| 1015 |
metrics:
|
| 1016 |
- type: total_reward
|
| 1017 |
+
value: 108.82 +/- 70.14
|
| 1018 |
name: Total reward
|
| 1019 |
- type: expert_normalized_total_reward
|
| 1020 |
+
value: 0.35 +/- 0.25
|
| 1021 |
name: Expert normalized total reward
|
| 1022 |
- type: human_normalized_total_reward
|
| 1023 |
+
value: 0.62 +/- 0.45
|
| 1024 |
name: Human normalized total reward
|
| 1025 |
- task:
|
| 1026 |
type: reinforcement-learning
|
|
|
|
| 1030 |
type: atari-upndown
|
| 1031 |
metrics:
|
| 1032 |
- type: total_reward
|
| 1033 |
+
value: 19074.60 +/- 9961.77
|
| 1034 |
name: Total reward
|
| 1035 |
- type: expert_normalized_total_reward
|
| 1036 |
value: 0.04 +/- 0.02
|
| 1037 |
name: Expert normalized total reward
|
| 1038 |
- type: human_normalized_total_reward
|
| 1039 |
+
value: 1.66 +/- 0.89
|
| 1040 |
name: Human normalized total reward
|
| 1041 |
- task:
|
| 1042 |
type: reinforcement-learning
|
|
|
|
| 1062 |
type: atari-videopinball
|
| 1063 |
metrics:
|
| 1064 |
- type: total_reward
|
| 1065 |
+
value: 12466.69 +/- 8723.07
|
| 1066 |
name: Total reward
|
| 1067 |
- type: expert_normalized_total_reward
|
| 1068 |
value: 0.03 +/- 0.02
|
| 1069 |
name: Expert normalized total reward
|
| 1070 |
- type: human_normalized_total_reward
|
| 1071 |
+
value: 0.71 +/- 0.49
|
| 1072 |
name: Human normalized total reward
|
| 1073 |
- task:
|
| 1074 |
type: reinforcement-learning
|
|
|
|
| 1078 |
type: atari-wizardofwor
|
| 1079 |
metrics:
|
| 1080 |
- type: total_reward
|
| 1081 |
+
value: 2231.00 +/- 2042.92
|
| 1082 |
name: Total reward
|
| 1083 |
- type: expert_normalized_total_reward
|
| 1084 |
+
value: 0.03 +/- 0.04
|
| 1085 |
name: Expert normalized total reward
|
| 1086 |
- type: human_normalized_total_reward
|
| 1087 |
+
value: 0.40 +/- 0.49
|
| 1088 |
name: Human normalized total reward
|
| 1089 |
- task:
|
| 1090 |
type: reinforcement-learning
|
|
|
|
| 1094 |
type: atari-yarsrevenge
|
| 1095 |
metrics:
|
| 1096 |
- type: total_reward
|
| 1097 |
+
value: 11190.85 +/- 7342.58
|
| 1098 |
name: Total reward
|
| 1099 |
- type: expert_normalized_total_reward
|
| 1100 |
+
value: 0.03 +/- 0.03
|
| 1101 |
name: Expert normalized total reward
|
| 1102 |
- type: human_normalized_total_reward
|
| 1103 |
+
value: 0.16 +/- 0.14
|
| 1104 |
name: Human normalized total reward
|
| 1105 |
- task:
|
| 1106 |
type: reinforcement-learning
|
|
|
|
| 1110 |
type: atari-zaxxon
|
| 1111 |
metrics:
|
| 1112 |
- type: total_reward
|
| 1113 |
+
value: 5976.00 +/- 2889.54
|
| 1114 |
name: Total reward
|
| 1115 |
- type: expert_normalized_total_reward
|
| 1116 |
+
value: 0.08 +/- 0.04
|
| 1117 |
name: Expert normalized total reward
|
| 1118 |
- type: human_normalized_total_reward
|
| 1119 |
+
value: 0.65 +/- 0.32
|
| 1120 |
name: Human normalized total reward
|
| 1121 |
- task:
|
| 1122 |
type: reinforcement-learning
|
|
|
|
| 1126 |
type: babyai-action-obj-door
|
| 1127 |
metrics:
|
| 1128 |
- type: total_reward
|
| 1129 |
+
value: 0.92 +/- 0.22
|
| 1130 |
name: Total reward
|
| 1131 |
- type: expert_normalized_total_reward
|
| 1132 |
+
value: 0.88 +/- 0.36
|
| 1133 |
name: Expert normalized total reward
|
| 1134 |
- task:
|
| 1135 |
type: reinforcement-learning
|
|
|
|
| 1152 |
type: babyai-boss-level-no-unlock
|
| 1153 |
metrics:
|
| 1154 |
- type: total_reward
|
| 1155 |
+
value: 0.49 +/- 0.43
|
| 1156 |
name: Total reward
|
| 1157 |
- type: expert_normalized_total_reward
|
| 1158 |
+
value: 0.49 +/- 0.49
|
| 1159 |
name: Expert normalized total reward
|
| 1160 |
- task:
|
| 1161 |
type: reinforcement-learning
|
|
|
|
| 1165 |
type: babyai-boss-level
|
| 1166 |
metrics:
|
| 1167 |
- type: total_reward
|
| 1168 |
+
value: 0.54 +/- 0.43
|
| 1169 |
name: Total reward
|
| 1170 |
- type: expert_normalized_total_reward
|
| 1171 |
+
value: 0.54 +/- 0.49
|
| 1172 |
name: Expert normalized total reward
|
| 1173 |
- task:
|
| 1174 |
type: reinforcement-learning
|
|
|
|
| 1178 |
type: babyai-find-obj-s5
|
| 1179 |
metrics:
|
| 1180 |
- type: total_reward
|
| 1181 |
+
value: 0.94 +/- 0.04
|
| 1182 |
name: Total reward
|
| 1183 |
- type: expert_normalized_total_reward
|
| 1184 |
value: 1.00 +/- 0.04
|
|
|
|
| 1191 |
type: babyai-go-to-door
|
| 1192 |
metrics:
|
| 1193 |
- type: total_reward
|
| 1194 |
+
value: 0.99 +/- 0.02
|
| 1195 |
name: Total reward
|
| 1196 |
- type: expert_normalized_total_reward
|
| 1197 |
+
value: 1.00 +/- 0.03
|
| 1198 |
name: Expert normalized total reward
|
| 1199 |
- task:
|
| 1200 |
type: reinforcement-learning
|
|
|
|
| 1204 |
type: babyai-go-to-imp-unlock
|
| 1205 |
metrics:
|
| 1206 |
- type: total_reward
|
| 1207 |
+
value: 0.53 +/- 0.41
|
| 1208 |
name: Total reward
|
| 1209 |
- type: expert_normalized_total_reward
|
| 1210 |
+
value: 0.60 +/- 0.55
|
| 1211 |
name: Expert normalized total reward
|
| 1212 |
- task:
|
| 1213 |
type: reinforcement-learning
|
|
|
|
| 1217 |
type: babyai-go-to-local
|
| 1218 |
metrics:
|
| 1219 |
- type: total_reward
|
| 1220 |
+
value: 0.87 +/- 0.16
|
| 1221 |
name: Total reward
|
| 1222 |
- type: expert_normalized_total_reward
|
| 1223 |
+
value: 0.93 +/- 0.22
|
| 1224 |
name: Expert normalized total reward
|
| 1225 |
- task:
|
| 1226 |
type: reinforcement-learning
|
|
|
|
| 1233 |
value: 0.98 +/- 0.04
|
| 1234 |
name: Total reward
|
| 1235 |
- type: expert_normalized_total_reward
|
| 1236 |
+
value: 0.98 +/- 0.08
|
| 1237 |
name: Expert normalized total reward
|
| 1238 |
- task:
|
| 1239 |
type: reinforcement-learning
|
|
|
|
| 1243 |
type: babyai-go-to-obj
|
| 1244 |
metrics:
|
| 1245 |
- type: total_reward
|
| 1246 |
+
value: 0.94 +/- 0.03
|
| 1247 |
name: Total reward
|
| 1248 |
- type: expert_normalized_total_reward
|
| 1249 |
+
value: 1.01 +/- 0.03
|
| 1250 |
name: Expert normalized total reward
|
| 1251 |
- task:
|
| 1252 |
type: reinforcement-learning
|
|
|
|
| 1256 |
type: babyai-go-to-red-ball-grey
|
| 1257 |
metrics:
|
| 1258 |
- type: total_reward
|
| 1259 |
+
value: 0.92 +/- 0.05
|
| 1260 |
name: Total reward
|
| 1261 |
- type: expert_normalized_total_reward
|
| 1262 |
+
value: 1.00 +/- 0.06
|
| 1263 |
name: Expert normalized total reward
|
| 1264 |
- task:
|
| 1265 |
type: reinforcement-learning
|
|
|
|
| 1272 |
value: 0.93 +/- 0.03
|
| 1273 |
name: Total reward
|
| 1274 |
- type: expert_normalized_total_reward
|
| 1275 |
+
value: 1.00 +/- 0.03
|
| 1276 |
name: Expert normalized total reward
|
| 1277 |
- task:
|
| 1278 |
type: reinforcement-learning
|
|
|
|
| 1282 |
type: babyai-go-to-red-ball
|
| 1283 |
metrics:
|
| 1284 |
- type: total_reward
|
| 1285 |
+
value: 0.91 +/- 0.09
|
| 1286 |
name: Total reward
|
| 1287 |
- type: expert_normalized_total_reward
|
| 1288 |
+
value: 0.98 +/- 0.12
|
| 1289 |
name: Expert normalized total reward
|
| 1290 |
- task:
|
| 1291 |
type: reinforcement-learning
|
|
|
|
| 1295 |
type: babyai-go-to-red-blue-ball
|
| 1296 |
metrics:
|
| 1297 |
- type: total_reward
|
| 1298 |
+
value: 0.91 +/- 0.08
|
| 1299 |
name: Total reward
|
| 1300 |
- type: expert_normalized_total_reward
|
| 1301 |
+
value: 0.99 +/- 0.10
|
| 1302 |
name: Expert normalized total reward
|
| 1303 |
- task:
|
| 1304 |
type: reinforcement-learning
|
|
|
|
| 1308 |
type: babyai-go-to-seq
|
| 1309 |
metrics:
|
| 1310 |
- type: total_reward
|
| 1311 |
+
value: 0.73 +/- 0.33
|
| 1312 |
name: Total reward
|
| 1313 |
- type: expert_normalized_total_reward
|
| 1314 |
+
value: 0.76 +/- 0.38
|
| 1315 |
name: Expert normalized total reward
|
| 1316 |
- task:
|
| 1317 |
type: reinforcement-learning
|
|
|
|
| 1321 |
type: babyai-go-to
|
| 1322 |
metrics:
|
| 1323 |
- type: total_reward
|
| 1324 |
+
value: 0.78 +/- 0.28
|
| 1325 |
name: Total reward
|
| 1326 |
- type: expert_normalized_total_reward
|
| 1327 |
+
value: 0.82 +/- 0.35
|
| 1328 |
name: Expert normalized total reward
|
| 1329 |
- task:
|
| 1330 |
type: reinforcement-learning
|
|
|
|
| 1334 |
type: babyai-key-corridor
|
| 1335 |
metrics:
|
| 1336 |
- type: total_reward
|
| 1337 |
+
value: 0.87 +/- 0.13
|
| 1338 |
name: Total reward
|
| 1339 |
- type: expert_normalized_total_reward
|
| 1340 |
+
value: 0.96 +/- 0.14
|
| 1341 |
name: Expert normalized total reward
|
| 1342 |
- task:
|
| 1343 |
type: reinforcement-learning
|
|
|
|
| 1347 |
type: babyai-mini-boss-level
|
| 1348 |
metrics:
|
| 1349 |
- type: total_reward
|
| 1350 |
+
value: 0.53 +/- 0.41
|
| 1351 |
name: Total reward
|
| 1352 |
- type: expert_normalized_total_reward
|
| 1353 |
+
value: 0.56 +/- 0.50
|
| 1354 |
name: Expert normalized total reward
|
| 1355 |
- task:
|
| 1356 |
type: reinforcement-learning
|
|
|
|
| 1360 |
type: babyai-move-two-across-s8n9
|
| 1361 |
metrics:
|
| 1362 |
- type: total_reward
|
| 1363 |
+
value: 0.05 +/- 0.19
|
| 1364 |
name: Total reward
|
| 1365 |
- type: expert_normalized_total_reward
|
| 1366 |
+
value: 0.05 +/- 0.20
|
| 1367 |
name: Expert normalized total reward
|
| 1368 |
- task:
|
| 1369 |
type: reinforcement-learning
|
|
|
|
| 1373 |
type: babyai-one-room-s8
|
| 1374 |
metrics:
|
| 1375 |
- type: total_reward
|
| 1376 |
+
value: 0.92 +/- 0.04
|
| 1377 |
name: Total reward
|
| 1378 |
- type: expert_normalized_total_reward
|
| 1379 |
value: 1.00 +/- 0.04
|
|
|
|
| 1399 |
type: babyai-open-doors-order-n4
|
| 1400 |
metrics:
|
| 1401 |
- type: total_reward
|
| 1402 |
+
value: 0.96 +/- 0.14
|
| 1403 |
name: Total reward
|
| 1404 |
- type: expert_normalized_total_reward
|
| 1405 |
+
value: 0.96 +/- 0.17
|
| 1406 |
name: Expert normalized total reward
|
| 1407 |
- task:
|
| 1408 |
type: reinforcement-learning
|
|
|
|
| 1412 |
type: babyai-open-red-door
|
| 1413 |
metrics:
|
| 1414 |
- type: total_reward
|
| 1415 |
+
value: 0.92 +/- 0.03
|
| 1416 |
name: Total reward
|
| 1417 |
- type: expert_normalized_total_reward
|
| 1418 |
value: 1.00 +/- 0.03
|
|
|
|
| 1438 |
type: babyai-open
|
| 1439 |
metrics:
|
| 1440 |
- type: total_reward
|
| 1441 |
+
value: 0.95 +/- 0.08
|
| 1442 |
name: Total reward
|
| 1443 |
- type: expert_normalized_total_reward
|
| 1444 |
+
value: 0.99 +/- 0.10
|
| 1445 |
name: Expert normalized total reward
|
| 1446 |
- task:
|
| 1447 |
type: reinforcement-learning
|
|
|
|
| 1464 |
type: babyai-pickup-dist
|
| 1465 |
metrics:
|
| 1466 |
- type: total_reward
|
| 1467 |
+
value: 0.87 +/- 0.12
|
| 1468 |
name: Total reward
|
| 1469 |
- type: expert_normalized_total_reward
|
| 1470 |
+
value: 1.02 +/- 0.16
|
| 1471 |
name: Expert normalized total reward
|
| 1472 |
- task:
|
| 1473 |
type: reinforcement-learning
|
|
|
|
| 1477 |
type: babyai-pickup-loc
|
| 1478 |
metrics:
|
| 1479 |
- type: total_reward
|
| 1480 |
+
value: 0.85 +/- 0.19
|
| 1481 |
name: Total reward
|
| 1482 |
- type: expert_normalized_total_reward
|
| 1483 |
+
value: 0.92 +/- 0.23
|
| 1484 |
name: Expert normalized total reward
|
| 1485 |
- task:
|
| 1486 |
type: reinforcement-learning
|
|
|
|
| 1490 |
type: babyai-pickup
|
| 1491 |
metrics:
|
| 1492 |
- type: total_reward
|
| 1493 |
+
value: 0.79 +/- 0.30
|
| 1494 |
name: Total reward
|
| 1495 |
- type: expert_normalized_total_reward
|
| 1496 |
+
value: 0.85 +/- 0.36
|
| 1497 |
name: Expert normalized total reward
|
| 1498 |
- task:
|
| 1499 |
type: reinforcement-learning
|
|
|
|
| 1503 |
type: babyai-put-next-local
|
| 1504 |
metrics:
|
| 1505 |
- type: total_reward
|
| 1506 |
+
value: 0.67 +/- 0.32
|
| 1507 |
name: Total reward
|
| 1508 |
- type: expert_normalized_total_reward
|
| 1509 |
+
value: 0.73 +/- 0.35
|
| 1510 |
name: Expert normalized total reward
|
| 1511 |
- task:
|
| 1512 |
type: reinforcement-learning
|
|
|
|
| 1516 |
type: babyai-put-next
|
| 1517 |
metrics:
|
| 1518 |
- type: total_reward
|
| 1519 |
+
value: 0.85 +/- 0.25
|
| 1520 |
name: Total reward
|
| 1521 |
- type: expert_normalized_total_reward
|
| 1522 |
+
value: 0.89 +/- 0.26
|
| 1523 |
name: Expert normalized total reward
|
| 1524 |
- task:
|
| 1525 |
type: reinforcement-learning
|
|
|
|
| 1529 |
type: babyai-synth-loc
|
| 1530 |
metrics:
|
| 1531 |
- type: total_reward
|
| 1532 |
+
value: 0.77 +/- 0.34
|
| 1533 |
name: Total reward
|
| 1534 |
- type: expert_normalized_total_reward
|
| 1535 |
+
value: 0.78 +/- 0.43
|
| 1536 |
name: Expert normalized total reward
|
| 1537 |
- task:
|
| 1538 |
type: reinforcement-learning
|
|
|
|
| 1542 |
type: babyai-synth-seq
|
| 1543 |
metrics:
|
| 1544 |
- type: total_reward
|
| 1545 |
+
value: 0.57 +/- 0.43
|
| 1546 |
name: Total reward
|
| 1547 |
- type: expert_normalized_total_reward
|
| 1548 |
+
value: 0.58 +/- 0.49
|
| 1549 |
name: Expert normalized total reward
|
| 1550 |
- task:
|
| 1551 |
type: reinforcement-learning
|
|
|
|
| 1555 |
type: babyai-synth
|
| 1556 |
metrics:
|
| 1557 |
- type: total_reward
|
| 1558 |
+
value: 0.75 +/- 0.35
|
| 1559 |
name: Total reward
|
| 1560 |
- type: expert_normalized_total_reward
|
| 1561 |
+
value: 0.78 +/- 0.43
|
| 1562 |
name: Expert normalized total reward
|
| 1563 |
- task:
|
| 1564 |
type: reinforcement-learning
|
|
|
|
| 1568 |
type: babyai-unblock-pickup
|
| 1569 |
metrics:
|
| 1570 |
- type: total_reward
|
| 1571 |
+
value: 0.79 +/- 0.29
|
| 1572 |
name: Total reward
|
| 1573 |
- type: expert_normalized_total_reward
|
| 1574 |
+
value: 0.86 +/- 0.35
|
| 1575 |
name: Expert normalized total reward
|
| 1576 |
- task:
|
| 1577 |
type: reinforcement-learning
|
|
|
|
| 1594 |
type: babyai-unlock-pickup
|
| 1595 |
metrics:
|
| 1596 |
- type: total_reward
|
| 1597 |
+
value: 0.75 +/- 0.03
|
| 1598 |
name: Total reward
|
| 1599 |
- type: expert_normalized_total_reward
|
| 1600 |
+
value: 1.00 +/- 0.05
|
| 1601 |
name: Expert normalized total reward
|
| 1602 |
- task:
|
| 1603 |
type: reinforcement-learning
|
|
|
|
| 1607 |
type: babyai-unlock-to-unlock
|
| 1608 |
metrics:
|
| 1609 |
- type: total_reward
|
| 1610 |
+
value: 0.85 +/- 0.31
|
| 1611 |
name: Total reward
|
| 1612 |
- type: expert_normalized_total_reward
|
| 1613 |
+
value: 0.88 +/- 0.32
|
| 1614 |
name: Expert normalized total reward
|
| 1615 |
- task:
|
| 1616 |
type: reinforcement-learning
|
|
|
|
| 1620 |
type: babyai-unlock
|
| 1621 |
metrics:
|
| 1622 |
- type: total_reward
|
| 1623 |
+
value: 0.43 +/- 0.43
|
| 1624 |
name: Total reward
|
| 1625 |
- type: expert_normalized_total_reward
|
| 1626 |
+
value: 0.48 +/- 0.52
|
| 1627 |
name: Expert normalized total reward
|
| 1628 |
- task:
|
| 1629 |
type: reinforcement-learning
|
|
|
|
| 1633 |
type: metaworld-assembly
|
| 1634 |
metrics:
|
| 1635 |
- type: total_reward
|
| 1636 |
+
value: 243.78 +/- 10.44
|
| 1637 |
name: Total reward
|
| 1638 |
- type: expert_normalized_total_reward
|
| 1639 |
+
value: 0.99 +/- 0.05
|
| 1640 |
name: Expert normalized total reward
|
| 1641 |
- task:
|
| 1642 |
type: reinforcement-learning
|
|
|
|
| 1646 |
type: metaworld-basketball
|
| 1647 |
metrics:
|
| 1648 |
- type: total_reward
|
| 1649 |
+
value: 1.71 +/- 0.63
|
| 1650 |
name: Total reward
|
| 1651 |
- type: expert_normalized_total_reward
|
| 1652 |
value: -0.00 +/- 0.00
|
|
|
|
| 1659 |
type: metaworld-bin-picking
|
| 1660 |
metrics:
|
| 1661 |
- type: total_reward
|
| 1662 |
+
value: 314.42 +/- 196.40
|
| 1663 |
name: Total reward
|
| 1664 |
- type: expert_normalized_total_reward
|
| 1665 |
+
value: 0.74 +/- 0.46
|
| 1666 |
name: Expert normalized total reward
|
| 1667 |
- task:
|
| 1668 |
type: reinforcement-learning
|
|
|
|
| 1672 |
type: metaworld-box-close
|
| 1673 |
metrics:
|
| 1674 |
- type: total_reward
|
| 1675 |
+
value: 482.86 +/- 146.37
|
| 1676 |
name: Total reward
|
| 1677 |
- type: expert_normalized_total_reward
|
| 1678 |
+
value: 0.93 +/- 0.34
|
| 1679 |
name: Expert normalized total reward
|
| 1680 |
- task:
|
| 1681 |
type: reinforcement-learning
|
|
|
|
| 1685 |
type: metaworld-button-press-topdown-wall
|
| 1686 |
metrics:
|
| 1687 |
- type: total_reward
|
| 1688 |
+
value: 268.30 +/- 82.78
|
| 1689 |
name: Total reward
|
| 1690 |
- type: expert_normalized_total_reward
|
| 1691 |
+
value: 0.51 +/- 0.18
|
| 1692 |
name: Expert normalized total reward
|
| 1693 |
- task:
|
| 1694 |
type: reinforcement-learning
|
|
|
|
| 1698 |
type: metaworld-button-press-topdown
|
| 1699 |
metrics:
|
| 1700 |
- type: total_reward
|
| 1701 |
+
value: 269.14 +/- 82.81
|
| 1702 |
name: Total reward
|
| 1703 |
- type: expert_normalized_total_reward
|
| 1704 |
+
value: 0.52 +/- 0.18
|
| 1705 |
name: Expert normalized total reward
|
| 1706 |
- task:
|
| 1707 |
type: reinforcement-learning
|
|
|
|
| 1711 |
type: metaworld-button-press-wall
|
| 1712 |
metrics:
|
| 1713 |
- type: total_reward
|
| 1714 |
+
value: 608.87 +/- 169.50
|
| 1715 |
name: Total reward
|
| 1716 |
- type: expert_normalized_total_reward
|
| 1717 |
+
value: 0.90 +/- 0.25
|
| 1718 |
name: Expert normalized total reward
|
| 1719 |
- task:
|
| 1720 |
type: reinforcement-learning
|
|
|
|
| 1724 |
type: metaworld-button-press
|
| 1725 |
metrics:
|
| 1726 |
- type: total_reward
|
| 1727 |
+
value: 624.03 +/- 73.53
|
| 1728 |
name: Total reward
|
| 1729 |
- type: expert_normalized_total_reward
|
| 1730 |
+
value: 0.97 +/- 0.12
|
| 1731 |
name: Expert normalized total reward
|
| 1732 |
- task:
|
| 1733 |
type: reinforcement-learning
|
|
|
|
| 1737 |
type: metaworld-coffee-button
|
| 1738 |
metrics:
|
| 1739 |
- type: total_reward
|
| 1740 |
+
value: 334.92 +/- 301.67
|
| 1741 |
name: Total reward
|
| 1742 |
- type: expert_normalized_total_reward
|
| 1743 |
+
value: 0.43 +/- 0.43
|
| 1744 |
name: Expert normalized total reward
|
| 1745 |
- task:
|
| 1746 |
type: reinforcement-learning
|
|
|
|
| 1750 |
type: metaworld-coffee-pull
|
| 1751 |
metrics:
|
| 1752 |
- type: total_reward
|
| 1753 |
+
value: 38.00 +/- 63.97
|
| 1754 |
name: Total reward
|
| 1755 |
- type: expert_normalized_total_reward
|
| 1756 |
+
value: 0.13 +/- 0.25
|
| 1757 |
name: Expert normalized total reward
|
| 1758 |
- task:
|
| 1759 |
type: reinforcement-learning
|
|
|
|
| 1763 |
type: metaworld-coffee-push
|
| 1764 |
metrics:
|
| 1765 |
- type: total_reward
|
| 1766 |
+
value: 151.38 +/- 207.69
|
| 1767 |
name: Total reward
|
| 1768 |
- type: expert_normalized_total_reward
|
| 1769 |
+
value: 0.30 +/- 0.42
|
| 1770 |
name: Expert normalized total reward
|
| 1771 |
- task:
|
| 1772 |
type: reinforcement-learning
|
|
|
|
| 1776 |
type: metaworld-dial-turn
|
| 1777 |
metrics:
|
| 1778 |
- type: total_reward
|
| 1779 |
+
value: 752.25 +/- 138.50
|
| 1780 |
name: Total reward
|
| 1781 |
- type: expert_normalized_total_reward
|
| 1782 |
+
value: 0.95 +/- 0.18
|
| 1783 |
name: Expert normalized total reward
|
| 1784 |
- task:
|
| 1785 |
type: reinforcement-learning
|
|
|
|
| 1789 |
type: metaworld-disassemble
|
| 1790 |
metrics:
|
| 1791 |
- type: total_reward
|
| 1792 |
+
value: 40.87 +/- 9.35
|
| 1793 |
name: Total reward
|
| 1794 |
- type: expert_normalized_total_reward
|
| 1795 |
+
value: 0.22 +/- 3.71
|
| 1796 |
name: Expert normalized total reward
|
| 1797 |
- task:
|
| 1798 |
type: reinforcement-learning
|
|
|
|
| 1802 |
type: metaworld-door-close
|
| 1803 |
metrics:
|
| 1804 |
- type: total_reward
|
| 1805 |
+
value: 530.48 +/- 29.02
|
| 1806 |
name: Total reward
|
| 1807 |
- type: expert_normalized_total_reward
|
| 1808 |
value: 1.00 +/- 0.06
|
|
|
|
| 1815 |
type: metaworld-door-lock
|
| 1816 |
metrics:
|
| 1817 |
- type: total_reward
|
| 1818 |
+
value: 678.98 +/- 194.57
|
| 1819 |
name: Total reward
|
| 1820 |
- type: expert_normalized_total_reward
|
| 1821 |
value: 0.81 +/- 0.28
|
|
|
|
| 1828 |
type: metaworld-door-open
|
| 1829 |
metrics:
|
| 1830 |
- type: total_reward
|
| 1831 |
+
value: 574.71 +/- 50.82
|
| 1832 |
name: Total reward
|
| 1833 |
- type: expert_normalized_total_reward
|
| 1834 |
+
value: 0.99 +/- 0.10
|
| 1835 |
name: Expert normalized total reward
|
| 1836 |
- task:
|
| 1837 |
type: reinforcement-learning
|
|
|
|
| 1841 |
type: metaworld-door-unlock
|
| 1842 |
metrics:
|
| 1843 |
- type: total_reward
|
| 1844 |
+
value: 761.82 +/- 114.70
|
| 1845 |
name: Total reward
|
| 1846 |
- type: expert_normalized_total_reward
|
| 1847 |
+
value: 0.94 +/- 0.16
|
| 1848 |
name: Expert normalized total reward
|
| 1849 |
- task:
|
| 1850 |
type: reinforcement-learning
|
|
|
|
| 1854 |
type: metaworld-drawer-close
|
| 1855 |
metrics:
|
| 1856 |
- type: total_reward
|
| 1857 |
+
value: 519.05 +/- 154.38
|
| 1858 |
name: Total reward
|
| 1859 |
- type: expert_normalized_total_reward
|
| 1860 |
+
value: 0.54 +/- 0.21
|
| 1861 |
name: Expert normalized total reward
|
| 1862 |
- task:
|
| 1863 |
type: reinforcement-learning
|
|
|
|
| 1867 |
type: metaworld-drawer-open
|
| 1868 |
metrics:
|
| 1869 |
- type: total_reward
|
| 1870 |
+
value: 486.02 +/- 34.17
|
| 1871 |
name: Total reward
|
| 1872 |
- type: expert_normalized_total_reward
|
| 1873 |
+
value: 0.98 +/- 0.09
|
| 1874 |
name: Expert normalized total reward
|
| 1875 |
- task:
|
| 1876 |
type: reinforcement-learning
|
|
|
|
| 1880 |
type: metaworld-faucet-close
|
| 1881 |
metrics:
|
| 1882 |
- type: total_reward
|
| 1883 |
+
value: 366.78 +/- 86.77
|
| 1884 |
name: Total reward
|
| 1885 |
- type: expert_normalized_total_reward
|
| 1886 |
+
value: 0.23 +/- 0.17
|
| 1887 |
name: Expert normalized total reward
|
| 1888 |
- task:
|
| 1889 |
type: reinforcement-learning
|
|
|
|
| 1893 |
type: metaworld-faucet-open
|
| 1894 |
metrics:
|
| 1895 |
- type: total_reward
|
| 1896 |
+
value: 685.01 +/- 65.52
|
| 1897 |
name: Total reward
|
| 1898 |
- type: expert_normalized_total_reward
|
| 1899 |
+
value: 0.96 +/- 0.14
|
| 1900 |
name: Expert normalized total reward
|
| 1901 |
- task:
|
| 1902 |
type: reinforcement-learning
|
|
|
|
| 1906 |
type: metaworld-hammer
|
| 1907 |
metrics:
|
| 1908 |
- type: total_reward
|
| 1909 |
+
value: 678.36 +/- 79.36
|
| 1910 |
name: Total reward
|
| 1911 |
- type: expert_normalized_total_reward
|
| 1912 |
+
value: 0.98 +/- 0.13
|
| 1913 |
name: Expert normalized total reward
|
| 1914 |
- task:
|
| 1915 |
type: reinforcement-learning
|
|
|
|
| 1919 |
type: metaworld-hand-insert
|
| 1920 |
metrics:
|
| 1921 |
- type: total_reward
|
| 1922 |
+
value: 695.27 +/- 134.25
|
| 1923 |
name: Total reward
|
| 1924 |
- type: expert_normalized_total_reward
|
| 1925 |
+
value: 0.94 +/- 0.18
|
| 1926 |
name: Expert normalized total reward
|
| 1927 |
- task:
|
| 1928 |
type: reinforcement-learning
|
|
|
|
| 1932 |
type: metaworld-handle-press-side
|
| 1933 |
metrics:
|
| 1934 |
- type: total_reward
|
| 1935 |
+
value: 65.07 +/- 69.65
|
| 1936 |
name: Total reward
|
| 1937 |
- type: expert_normalized_total_reward
|
| 1938 |
+
value: 0.01 +/- 0.09
|
| 1939 |
name: Expert normalized total reward
|
| 1940 |
- task:
|
| 1941 |
type: reinforcement-learning
|
|
|
|
| 1945 |
type: metaworld-handle-press
|
| 1946 |
metrics:
|
| 1947 |
- type: total_reward
|
| 1948 |
+
value: 695.97 +/- 311.48
|
| 1949 |
name: Total reward
|
| 1950 |
- type: expert_normalized_total_reward
|
| 1951 |
+
value: 0.79 +/- 0.40
|
| 1952 |
name: Expert normalized total reward
|
| 1953 |
- task:
|
| 1954 |
type: reinforcement-learning
|
|
|
|
| 1958 |
type: metaworld-handle-pull-side
|
| 1959 |
metrics:
|
| 1960 |
- type: total_reward
|
| 1961 |
+
value: 145.34 +/- 179.01
|
| 1962 |
name: Total reward
|
| 1963 |
- type: expert_normalized_total_reward
|
| 1964 |
+
value: 0.37 +/- 0.47
|
| 1965 |
name: Expert normalized total reward
|
| 1966 |
- task:
|
| 1967 |
type: reinforcement-learning
|
|
|
|
| 1971 |
type: metaworld-handle-pull
|
| 1972 |
metrics:
|
| 1973 |
- type: total_reward
|
| 1974 |
+
value: 514.56 +/- 205.75
|
| 1975 |
name: Total reward
|
| 1976 |
- type: expert_normalized_total_reward
|
| 1977 |
+
value: 0.77 +/- 0.31
|
| 1978 |
name: Expert normalized total reward
|
| 1979 |
- task:
|
| 1980 |
type: reinforcement-learning
|
|
|
|
| 1984 |
type: metaworld-lever-pull
|
| 1985 |
metrics:
|
| 1986 |
- type: total_reward
|
| 1987 |
+
value: 250.51 +/- 220.33
|
| 1988 |
name: Total reward
|
| 1989 |
- type: expert_normalized_total_reward
|
| 1990 |
+
value: 0.34 +/- 0.40
|
| 1991 |
name: Expert normalized total reward
|
| 1992 |
- task:
|
| 1993 |
type: reinforcement-learning
|
|
|
|
| 1997 |
type: metaworld-peg-insert-side
|
| 1998 |
metrics:
|
| 1999 |
- type: total_reward
|
| 2000 |
+
value: 305.94 +/- 166.53
|
| 2001 |
name: Total reward
|
| 2002 |
- type: expert_normalized_total_reward
|
| 2003 |
+
value: 0.97 +/- 0.53
|
| 2004 |
name: Expert normalized total reward
|
| 2005 |
- task:
|
| 2006 |
type: reinforcement-learning
|
|
|
|
| 2010 |
type: metaworld-peg-unplug-side
|
| 2011 |
metrics:
|
| 2012 |
- type: total_reward
|
| 2013 |
+
value: 120.73 +/- 169.26
|
| 2014 |
name: Total reward
|
| 2015 |
- type: expert_normalized_total_reward
|
| 2016 |
+
value: 0.26 +/- 0.37
|
| 2017 |
name: Expert normalized total reward
|
| 2018 |
- task:
|
| 2019 |
type: reinforcement-learning
|
|
|
|
| 2036 |
type: metaworld-pick-place-wall
|
| 2037 |
metrics:
|
| 2038 |
- type: total_reward
|
| 2039 |
+
value: 62.30 +/- 131.13
|
| 2040 |
name: Total reward
|
| 2041 |
- type: expert_normalized_total_reward
|
| 2042 |
+
value: 0.14 +/- 0.29
|
| 2043 |
name: Expert normalized total reward
|
| 2044 |
- task:
|
| 2045 |
type: reinforcement-learning
|
|
|
|
| 2049 |
type: metaworld-pick-place
|
| 2050 |
metrics:
|
| 2051 |
- type: total_reward
|
| 2052 |
+
value: 311.95 +/- 180.95
|
| 2053 |
name: Total reward
|
| 2054 |
- type: expert_normalized_total_reward
|
| 2055 |
+
value: 0.74 +/- 0.43
|
| 2056 |
name: Expert normalized total reward
|
| 2057 |
- task:
|
| 2058 |
type: reinforcement-learning
|
|
|
|
| 2062 |
type: metaworld-plate-slide-back-side
|
| 2063 |
metrics:
|
| 2064 |
- type: total_reward
|
| 2065 |
+
value: 689.54 +/- 157.90
|
| 2066 |
name: Total reward
|
| 2067 |
- type: expert_normalized_total_reward
|
| 2068 |
+
value: 0.94 +/- 0.23
|
| 2069 |
name: Expert normalized total reward
|
| 2070 |
- task:
|
| 2071 |
type: reinforcement-learning
|
|
|
|
| 2075 |
type: metaworld-plate-slide-back
|
| 2076 |
metrics:
|
| 2077 |
- type: total_reward
|
| 2078 |
+
value: 197.00 +/- 1.58
|
| 2079 |
name: Total reward
|
| 2080 |
- type: expert_normalized_total_reward
|
| 2081 |
value: 0.24 +/- 0.00
|
|
|
|
| 2088 |
type: metaworld-plate-slide-side
|
| 2089 |
metrics:
|
| 2090 |
- type: total_reward
|
| 2091 |
+
value: 122.56 +/- 24.56
|
| 2092 |
name: Total reward
|
| 2093 |
- type: expert_normalized_total_reward
|
| 2094 |
value: 0.16 +/- 0.04
|
|
|
|
| 2101 |
type: metaworld-plate-slide
|
| 2102 |
metrics:
|
| 2103 |
- type: total_reward
|
| 2104 |
+
value: 456.66 +/- 198.51
|
| 2105 |
name: Total reward
|
| 2106 |
- type: expert_normalized_total_reward
|
| 2107 |
+
value: 0.84 +/- 0.44
|
| 2108 |
name: Expert normalized total reward
|
| 2109 |
- task:
|
| 2110 |
type: reinforcement-learning
|
|
|
|
| 2114 |
type: metaworld-push-back
|
| 2115 |
metrics:
|
| 2116 |
- type: total_reward
|
| 2117 |
+
value: 71.38 +/- 100.60
|
| 2118 |
name: Total reward
|
| 2119 |
- type: expert_normalized_total_reward
|
| 2120 |
+
value: 0.84 +/- 1.20
|
| 2121 |
name: Expert normalized total reward
|
| 2122 |
- task:
|
| 2123 |
type: reinforcement-learning
|
|
|
|
| 2127 |
type: metaworld-push-wall
|
| 2128 |
metrics:
|
| 2129 |
- type: total_reward
|
| 2130 |
+
value: 216.66 +/- 256.33
|
| 2131 |
name: Total reward
|
| 2132 |
- type: expert_normalized_total_reward
|
| 2133 |
+
value: 0.28 +/- 0.35
|
| 2134 |
name: Expert normalized total reward
|
| 2135 |
- task:
|
| 2136 |
type: reinforcement-learning
|
|
|
|
| 2140 |
type: metaworld-push
|
| 2141 |
metrics:
|
| 2142 |
- type: total_reward
|
| 2143 |
+
value: 583.25 +/- 296.10
|
| 2144 |
name: Total reward
|
| 2145 |
- type: expert_normalized_total_reward
|
| 2146 |
+
value: 0.78 +/- 0.40
|
| 2147 |
name: Expert normalized total reward
|
| 2148 |
- task:
|
| 2149 |
type: reinforcement-learning
|
|
|
|
| 2153 |
type: metaworld-reach-wall
|
| 2154 |
metrics:
|
| 2155 |
- type: total_reward
|
| 2156 |
+
value: 681.90 +/- 186.63
|
| 2157 |
name: Total reward
|
| 2158 |
- type: expert_normalized_total_reward
|
| 2159 |
+
value: 0.89 +/- 0.31
|
| 2160 |
name: Expert normalized total reward
|
| 2161 |
- task:
|
| 2162 |
type: reinforcement-learning
|
|
|
|
| 2166 |
type: metaworld-reach
|
| 2167 |
metrics:
|
| 2168 |
- type: total_reward
|
| 2169 |
+
value: 347.45 +/- 190.66
|
| 2170 |
name: Total reward
|
| 2171 |
- type: expert_normalized_total_reward
|
| 2172 |
+
value: 0.37 +/- 0.36
|
| 2173 |
name: Expert normalized total reward
|
| 2174 |
- task:
|
| 2175 |
type: reinforcement-learning
|
|
|
|
| 2179 |
type: metaworld-shelf-place
|
| 2180 |
metrics:
|
| 2181 |
- type: total_reward
|
| 2182 |
+
value: 60.57 +/- 97.16
|
| 2183 |
name: Total reward
|
| 2184 |
- type: expert_normalized_total_reward
|
| 2185 |
+
value: 0.25 +/- 0.40
|
| 2186 |
name: Expert normalized total reward
|
| 2187 |
- task:
|
| 2188 |
type: reinforcement-learning
|
|
|
|
| 2192 |
type: metaworld-soccer
|
| 2193 |
metrics:
|
| 2194 |
- type: total_reward
|
| 2195 |
+
value: 309.21 +/- 172.64
|
| 2196 |
name: Total reward
|
| 2197 |
- type: expert_normalized_total_reward
|
| 2198 |
+
value: 0.82 +/- 0.47
|
| 2199 |
name: Expert normalized total reward
|
| 2200 |
- task:
|
| 2201 |
type: reinforcement-learning
|
|
|
|
| 2205 |
type: metaworld-stick-pull
|
| 2206 |
metrics:
|
| 2207 |
- type: total_reward
|
| 2208 |
+
value: 364.98 +/- 234.82
|
| 2209 |
name: Total reward
|
| 2210 |
- type: expert_normalized_total_reward
|
| 2211 |
+
value: 0.70 +/- 0.45
|
| 2212 |
name: Expert normalized total reward
|
| 2213 |
- task:
|
| 2214 |
type: reinforcement-learning
|
|
|
|
| 2218 |
type: metaworld-stick-push
|
| 2219 |
metrics:
|
| 2220 |
- type: total_reward
|
| 2221 |
+
value: 91.05 +/- 204.71
|
| 2222 |
name: Total reward
|
| 2223 |
- type: expert_normalized_total_reward
|
| 2224 |
+
value: 0.14 +/- 0.33
|
| 2225 |
name: Expert normalized total reward
|
| 2226 |
- task:
|
| 2227 |
type: reinforcement-learning
|
|
|
|
| 2231 |
type: metaworld-sweep-into
|
| 2232 |
metrics:
|
| 2233 |
- type: total_reward
|
| 2234 |
+
value: 714.98 +/- 209.19
|
| 2235 |
name: Total reward
|
| 2236 |
- type: expert_normalized_total_reward
|
| 2237 |
+
value: 0.89 +/- 0.27
|
| 2238 |
name: Expert normalized total reward
|
| 2239 |
- task:
|
| 2240 |
type: reinforcement-learning
|
|
|
|
| 2244 |
type: metaworld-sweep
|
| 2245 |
metrics:
|
| 2246 |
- type: total_reward
|
| 2247 |
+
value: 15.82 +/- 16.34
|
| 2248 |
name: Total reward
|
| 2249 |
- type: expert_normalized_total_reward
|
| 2250 |
+
value: 0.01 +/- 0.03
|
| 2251 |
name: Expert normalized total reward
|
| 2252 |
- task:
|
| 2253 |
type: reinforcement-learning
|
|
|
|
| 2257 |
type: metaworld-window-close
|
| 2258 |
metrics:
|
| 2259 |
- type: total_reward
|
| 2260 |
+
value: 347.90 +/- 222.50
|
| 2261 |
name: Total reward
|
| 2262 |
- type: expert_normalized_total_reward
|
| 2263 |
+
value: 0.54 +/- 0.42
|
| 2264 |
name: Expert normalized total reward
|
| 2265 |
- task:
|
| 2266 |
type: reinforcement-learning
|
|
|
|
| 2270 |
type: metaworld-window-open
|
| 2271 |
metrics:
|
| 2272 |
- type: total_reward
|
| 2273 |
+
value: 574.72 +/- 75.65
|
| 2274 |
name: Total reward
|
| 2275 |
- type: expert_normalized_total_reward
|
| 2276 |
+
value: 0.97 +/- 0.14
|
| 2277 |
name: Expert normalized total reward
|
| 2278 |
- task:
|
| 2279 |
type: reinforcement-learning
|
|
|
|
| 2283 |
type: mujoco-ant
|
| 2284 |
metrics:
|
| 2285 |
- type: total_reward
|
| 2286 |
+
value: 4993.13 +/- 1656.89
|
| 2287 |
name: Total reward
|
| 2288 |
- type: expert_normalized_total_reward
|
| 2289 |
+
value: 0.86 +/- 0.28
|
| 2290 |
name: Expert normalized total reward
|
| 2291 |
- task:
|
| 2292 |
type: reinforcement-learning
|
|
|
|
| 2296 |
type: mujoco-doublependulum
|
| 2297 |
metrics:
|
| 2298 |
- type: total_reward
|
| 2299 |
+
value: 8744.92 +/- 1471.45
|
| 2300 |
name: Total reward
|
| 2301 |
- type: expert_normalized_total_reward
|
| 2302 |
+
value: 0.94 +/- 0.16
|
| 2303 |
name: Expert normalized total reward
|
| 2304 |
- task:
|
| 2305 |
type: reinforcement-learning
|
|
|
|
| 2309 |
type: mujoco-halfcheetah
|
| 2310 |
metrics:
|
| 2311 |
- type: total_reward
|
| 2312 |
+
value: 6601.12 +/- 488.36
|
| 2313 |
name: Total reward
|
| 2314 |
- type: expert_normalized_total_reward
|
| 2315 |
+
value: 0.89 +/- 0.06
|
| 2316 |
name: Expert normalized total reward
|
| 2317 |
- task:
|
| 2318 |
type: reinforcement-learning
|
|
|
|
| 2322 |
type: mujoco-hopper
|
| 2323 |
metrics:
|
| 2324 |
- type: total_reward
|
| 2325 |
+
value: 1435.45 +/- 361.77
|
| 2326 |
name: Total reward
|
| 2327 |
- type: expert_normalized_total_reward
|
| 2328 |
+
value: 0.77 +/- 0.20
|
| 2329 |
name: Expert normalized total reward
|
| 2330 |
- task:
|
| 2331 |
type: reinforcement-learning
|
|
|
|
| 2335 |
type: mujoco-humanoid
|
| 2336 |
metrics:
|
| 2337 |
- type: total_reward
|
| 2338 |
+
value: 695.92 +/- 115.07
|
| 2339 |
name: Total reward
|
| 2340 |
- type: expert_normalized_total_reward
|
| 2341 |
value: 0.09 +/- 0.02
|
|
|
|
| 2348 |
type: mujoco-pendulum
|
| 2349 |
metrics:
|
| 2350 |
- type: total_reward
|
| 2351 |
+
value: 117.64 +/- 21.73
|
| 2352 |
name: Total reward
|
| 2353 |
- type: expert_normalized_total_reward
|
| 2354 |
+
value: 0.24 +/- 0.05
|
| 2355 |
name: Expert normalized total reward
|
| 2356 |
- task:
|
| 2357 |
type: reinforcement-learning
|
|
|
|
| 2361 |
type: mujoco-pusher
|
| 2362 |
metrics:
|
| 2363 |
- type: total_reward
|
| 2364 |
+
value: -24.93 +/- 6.47
|
| 2365 |
name: Total reward
|
| 2366 |
- type: expert_normalized_total_reward
|
| 2367 |
+
value: 1.00 +/- 0.05
|
| 2368 |
name: Expert normalized total reward
|
| 2369 |
- task:
|
| 2370 |
type: reinforcement-learning
|
|
|
|
| 2374 |
type: mujoco-reacher
|
| 2375 |
metrics:
|
| 2376 |
- type: total_reward
|
| 2377 |
+
value: -5.77 +/- 2.27
|
| 2378 |
name: Total reward
|
| 2379 |
- type: expert_normalized_total_reward
|
| 2380 |
+
value: 1.00 +/- 0.06
|
| 2381 |
name: Expert normalized total reward
|
| 2382 |
- task:
|
| 2383 |
type: reinforcement-learning
|
|
|
|
| 2387 |
type: mujoco-standup
|
| 2388 |
metrics:
|
| 2389 |
- type: total_reward
|
| 2390 |
+
value: 113587.22 +/- 21821.69
|
| 2391 |
name: Total reward
|
| 2392 |
- type: expert_normalized_total_reward
|
| 2393 |
+
value: 0.33 +/- 0.09
|
| 2394 |
name: Expert normalized total reward
|
| 2395 |
- task:
|
| 2396 |
type: reinforcement-learning
|
|
|
|
| 2400 |
type: mujoco-swimmer
|
| 2401 |
metrics:
|
| 2402 |
- type: total_reward
|
| 2403 |
+
value: 94.08 +/- 3.94
|
| 2404 |
name: Total reward
|
| 2405 |
- type: expert_normalized_total_reward
|
| 2406 |
+
value: 1.02 +/- 0.04
|
| 2407 |
name: Expert normalized total reward
|
| 2408 |
- task:
|
| 2409 |
type: reinforcement-learning
|
|
|
|
| 2413 |
type: mujoco-walker
|
| 2414 |
metrics:
|
| 2415 |
- type: total_reward
|
| 2416 |
+
value: 4381.69 +/- 848.39
|
| 2417 |
name: Total reward
|
| 2418 |
- type: expert_normalized_total_reward
|
| 2419 |
+
value: 0.95 +/- 0.18
|
| 2420 |
name: Expert normalized total reward
|
| 2421 |
---
|
| 2422 |
|
|
|
|
| 2440 |
## Training
|
| 2441 |
|
| 2442 |
<details>
|
| 2443 |
+
<summary>The model was trained on the following tasks:</summary>
|
| 2444 |
+
|
| 2445 |
- Alien
|
| 2446 |
- Amidar
|
| 2447 |
- Assault
|
|
|
|
| 2611 |
|
| 2612 |
model = AutoModelForCausalLM.from_pretrained("jat-project/jat")
|
| 2613 |
```
|
|
|