File size: 11,647 Bytes
63bb3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
library_name: peft
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xml-roberta-large-ner-qlorafinetune-runs-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xml-roberta-large-ner-qlorafinetune-runs-colab

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0777
- Precision: 0.9349
- Recall: 0.9537
- F1: 0.9442
- Accuracy: 0.9802

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2141
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 2.1318        | 0.0654 | 20   | 0.9601          | 0.5965    | 0.0370 | 0.0696 | 0.7295   |
| 0.6887        | 0.1307 | 40   | 0.3004          | 0.7758    | 0.7688 | 0.7723 | 0.9181   |
| 0.3473        | 0.1961 | 60   | 0.2058          | 0.8130    | 0.8602 | 0.8359 | 0.9424   |
| 0.25          | 0.2614 | 80   | 0.1636          | 0.8543    | 0.8732 | 0.8637 | 0.9519   |
| 0.2186        | 0.3268 | 100  | 0.1458          | 0.8713    | 0.8847 | 0.8780 | 0.9586   |
| 0.2276        | 0.3922 | 120  | 0.1288          | 0.8641    | 0.9096 | 0.8863 | 0.9630   |
| 0.1733        | 0.4575 | 140  | 0.1151          | 0.9050    | 0.9017 | 0.9034 | 0.9640   |
| 0.1584        | 0.5229 | 160  | 0.1083          | 0.8944    | 0.9414 | 0.9173 | 0.9701   |
| 0.1506        | 0.5882 | 180  | 0.1213          | 0.8635    | 0.9482 | 0.9039 | 0.9648   |
| 0.1303        | 0.6536 | 200  | 0.0963          | 0.8953    | 0.9409 | 0.9175 | 0.9699   |
| 0.1327        | 0.7190 | 220  | 0.1088          | 0.8808    | 0.9144 | 0.8973 | 0.9655   |
| 0.1416        | 0.7843 | 240  | 0.0903          | 0.9173    | 0.9429 | 0.9299 | 0.9748   |
| 0.1229        | 0.8497 | 260  | 0.0924          | 0.9197    | 0.9390 | 0.9292 | 0.9740   |
| 0.1228        | 0.9150 | 280  | 0.1105          | 0.8943    | 0.9463 | 0.9196 | 0.9680   |
| 0.1338        | 0.9804 | 300  | 0.0840          | 0.9174    | 0.9472 | 0.9320 | 0.9749   |
| 0.1141        | 1.0458 | 320  | 0.0906          | 0.9121    | 0.9488 | 0.9301 | 0.9744   |
| 0.0983        | 1.1111 | 340  | 0.0926          | 0.9112    | 0.9570 | 0.9336 | 0.9732   |
| 0.099         | 1.1765 | 360  | 0.0791          | 0.9204    | 0.9508 | 0.9354 | 0.9765   |
| 0.0947        | 1.2418 | 380  | 0.0852          | 0.9271    | 0.9469 | 0.9369 | 0.9769   |
| 0.1163        | 1.3072 | 400  | 0.0764          | 0.9231    | 0.9484 | 0.9356 | 0.9765   |
| 0.105         | 1.3725 | 420  | 0.0863          | 0.9062    | 0.9355 | 0.9206 | 0.9732   |
| 0.096         | 1.4379 | 440  | 0.0833          | 0.9282    | 0.9473 | 0.9377 | 0.9772   |
| 0.0927        | 1.5033 | 460  | 0.0714          | 0.9368    | 0.9520 | 0.9443 | 0.9788   |
| 0.0944        | 1.5686 | 480  | 0.0730          | 0.9296    | 0.9579 | 0.9435 | 0.9784   |
| 0.0797        | 1.6340 | 500  | 0.0837          | 0.9180    | 0.9493 | 0.9334 | 0.9756   |
| 0.0726        | 1.6993 | 520  | 0.0834          | 0.9173    | 0.9660 | 0.9410 | 0.9772   |
| 0.078         | 1.7647 | 540  | 0.0744          | 0.9292    | 0.9435 | 0.9363 | 0.9780   |
| 0.0902        | 1.8301 | 560  | 0.0793          | 0.9275    | 0.9564 | 0.9417 | 0.9767   |
| 0.0874        | 1.8954 | 580  | 0.0859          | 0.9180    | 0.9573 | 0.9372 | 0.9752   |
| 0.089         | 1.9608 | 600  | 0.0860          | 0.9146    | 0.9586 | 0.9361 | 0.9745   |
| 0.0766        | 2.0261 | 620  | 0.0821          | 0.9212    | 0.9569 | 0.9387 | 0.9772   |
| 0.067         | 2.0915 | 640  | 0.0746          | 0.9323    | 0.9583 | 0.9452 | 0.9797   |
| 0.0535        | 2.1569 | 660  | 0.0771          | 0.9236    | 0.9476 | 0.9354 | 0.9774   |
| 0.0794        | 2.2222 | 680  | 0.0779          | 0.9315    | 0.9544 | 0.9428 | 0.9782   |
| 0.0819        | 2.2876 | 700  | 0.0841          | 0.9111    | 0.9443 | 0.9274 | 0.9756   |
| 0.0642        | 2.3529 | 720  | 0.0671          | 0.9406    | 0.9589 | 0.9497 | 0.9818   |
| 0.0681        | 2.4183 | 740  | 0.0724          | 0.9354    | 0.9464 | 0.9409 | 0.9789   |
| 0.0881        | 2.4837 | 760  | 0.0689          | 0.9327    | 0.9575 | 0.9450 | 0.9810   |
| 0.0706        | 2.5490 | 780  | 0.0813          | 0.9242    | 0.9582 | 0.9409 | 0.9782   |
| 0.0765        | 2.6144 | 800  | 0.0689          | 0.9365    | 0.9551 | 0.9457 | 0.9797   |
| 0.062         | 2.6797 | 820  | 0.0716          | 0.9434    | 0.9478 | 0.9456 | 0.9804   |
| 0.093         | 2.7451 | 840  | 0.0754          | 0.9282    | 0.9490 | 0.9385 | 0.9783   |
| 0.0659        | 2.8105 | 860  | 0.0799          | 0.9227    | 0.9524 | 0.9373 | 0.9775   |
| 0.0806        | 2.8758 | 880  | 0.0775          | 0.9197    | 0.9533 | 0.9362 | 0.9777   |
| 0.0632        | 2.9412 | 900  | 0.0754          | 0.9229    | 0.9569 | 0.9396 | 0.9789   |
| 0.064         | 3.0065 | 920  | 0.0700          | 0.9387    | 0.9556 | 0.9471 | 0.9813   |
| 0.0499        | 3.0719 | 940  | 0.0725          | 0.9282    | 0.9573 | 0.9425 | 0.9804   |
| 0.0525        | 3.1373 | 960  | 0.0852          | 0.9258    | 0.9572 | 0.9412 | 0.9771   |
| 0.0488        | 3.2026 | 980  | 0.0740          | 0.9298    | 0.9577 | 0.9436 | 0.9792   |
| 0.0602        | 3.2680 | 1000 | 0.0785          | 0.9274    | 0.9507 | 0.9389 | 0.9777   |
| 0.0574        | 3.3333 | 1020 | 0.0746          | 0.9362    | 0.9537 | 0.9449 | 0.9796   |
| 0.0583        | 3.3987 | 1040 | 0.0768          | 0.9272    | 0.9641 | 0.9453 | 0.9798   |
| 0.0618        | 3.4641 | 1060 | 0.0774          | 0.9264    | 0.9546 | 0.9403 | 0.9783   |
| 0.0503        | 3.5294 | 1080 | 0.0724          | 0.9287    | 0.9484 | 0.9385 | 0.9783   |
| 0.0529        | 3.5948 | 1100 | 0.0777          | 0.9349    | 0.9556 | 0.9451 | 0.9787   |
| 0.0448        | 3.6601 | 1120 | 0.0686          | 0.9383    | 0.9563 | 0.9472 | 0.9815   |
| 0.0658        | 3.7255 | 1140 | 0.0683          | 0.9453    | 0.9576 | 0.9514 | 0.9817   |
| 0.0591        | 3.7908 | 1160 | 0.0650          | 0.9407    | 0.9586 | 0.9496 | 0.9822   |
| 0.0635        | 3.8562 | 1180 | 0.0781          | 0.9283    | 0.9551 | 0.9415 | 0.9779   |
| 0.063         | 3.9216 | 1200 | 0.0764          | 0.9330    | 0.9545 | 0.9436 | 0.9783   |
| 0.0586        | 3.9869 | 1220 | 0.0706          | 0.9334    | 0.9548 | 0.9440 | 0.9808   |
| 0.0446        | 4.0523 | 1240 | 0.0744          | 0.9319    | 0.9556 | 0.9436 | 0.9794   |
| 0.0373        | 4.1176 | 1260 | 0.0713          | 0.9351    | 0.9534 | 0.9442 | 0.9802   |
| 0.0387        | 4.1830 | 1280 | 0.0752          | 0.9371    | 0.9537 | 0.9453 | 0.9805   |
| 0.0449        | 4.2484 | 1300 | 0.0751          | 0.9360    | 0.9536 | 0.9447 | 0.9805   |
| 0.0415        | 4.3137 | 1320 | 0.0740          | 0.9419    | 0.9506 | 0.9462 | 0.9814   |
| 0.0484        | 4.3791 | 1340 | 0.0692          | 0.9409    | 0.9562 | 0.9485 | 0.9815   |
| 0.0414        | 4.4444 | 1360 | 0.0751          | 0.9288    | 0.9555 | 0.9419 | 0.9797   |
| 0.0346        | 4.5098 | 1380 | 0.0790          | 0.9267    | 0.9560 | 0.9411 | 0.9796   |
| 0.0466        | 4.5752 | 1400 | 0.0840          | 0.9187    | 0.9414 | 0.9299 | 0.9770   |
| 0.0467        | 4.6405 | 1420 | 0.0739          | 0.9342    | 0.9579 | 0.9459 | 0.9805   |
| 0.0401        | 4.7059 | 1440 | 0.0781          | 0.9293    | 0.9530 | 0.9410 | 0.9786   |
| 0.0502        | 4.7712 | 1460 | 0.0768          | 0.9323    | 0.9582 | 0.9451 | 0.9801   |
| 0.0403        | 4.8366 | 1480 | 0.0745          | 0.9431    | 0.9564 | 0.9497 | 0.9813   |
| 0.0471        | 4.9020 | 1500 | 0.0772          | 0.9316    | 0.9581 | 0.9447 | 0.9796   |
| 0.0556        | 4.9673 | 1520 | 0.0749          | 0.9324    | 0.9531 | 0.9426 | 0.9801   |
| 0.0398        | 5.0327 | 1540 | 0.0784          | 0.9310    | 0.9534 | 0.9421 | 0.9796   |
| 0.0422        | 5.0980 | 1560 | 0.0741          | 0.9386    | 0.9562 | 0.9473 | 0.9812   |
| 0.0545        | 5.1634 | 1580 | 0.0721          | 0.9398    | 0.9593 | 0.9495 | 0.9817   |
| 0.0367        | 5.2288 | 1600 | 0.0815          | 0.9241    | 0.9526 | 0.9381 | 0.9778   |
| 0.0333        | 5.2941 | 1620 | 0.0741          | 0.9381    | 0.9545 | 0.9463 | 0.9805   |
| 0.0324        | 5.3595 | 1640 | 0.0755          | 0.9368    | 0.9569 | 0.9468 | 0.9807   |
| 0.0343        | 5.4248 | 1660 | 0.0735          | 0.9412    | 0.9536 | 0.9473 | 0.9811   |
| 0.0405        | 5.4902 | 1680 | 0.0773          | 0.9344    | 0.9550 | 0.9446 | 0.9803   |
| 0.0343        | 5.5556 | 1700 | 0.0723          | 0.9412    | 0.9554 | 0.9482 | 0.9815   |
| 0.0379        | 5.6209 | 1720 | 0.0787          | 0.9284    | 0.9513 | 0.9397 | 0.9788   |
| 0.0346        | 5.6863 | 1740 | 0.0741          | 0.9405    | 0.9548 | 0.9476 | 0.9808   |
| 0.0376        | 5.7516 | 1760 | 0.0794          | 0.9224    | 0.9485 | 0.9353 | 0.9781   |
| 0.0288        | 5.8170 | 1780 | 0.0758          | 0.9367    | 0.9594 | 0.9479 | 0.9813   |
| 0.0394        | 5.8824 | 1800 | 0.0750          | 0.9394    | 0.9566 | 0.9479 | 0.9810   |
| 0.0296        | 5.9477 | 1820 | 0.0736          | 0.9396    | 0.9569 | 0.9482 | 0.9814   |
| 0.0335        | 6.0131 | 1840 | 0.0773          | 0.9355    | 0.9549 | 0.9451 | 0.9802   |
| 0.0297        | 6.0784 | 1860 | 0.0760          | 0.9361    | 0.9536 | 0.9447 | 0.9803   |
| 0.027         | 6.1438 | 1880 | 0.0770          | 0.9320    | 0.9528 | 0.9423 | 0.9798   |
| 0.0247        | 6.2092 | 1900 | 0.0788          | 0.9318    | 0.9514 | 0.9415 | 0.9795   |
| 0.0335        | 6.2745 | 1920 | 0.0770          | 0.9390    | 0.9566 | 0.9477 | 0.9810   |
| 0.0286        | 6.3399 | 1940 | 0.0770          | 0.9361    | 0.9558 | 0.9459 | 0.9805   |
| 0.0256        | 6.4052 | 1960 | 0.0765          | 0.9351    | 0.9546 | 0.9447 | 0.9802   |
| 0.0268        | 6.4706 | 1980 | 0.0773          | 0.9335    | 0.9520 | 0.9426 | 0.9801   |
| 0.0247        | 6.5359 | 2000 | 0.0770          | 0.9361    | 0.9550 | 0.9454 | 0.9807   |
| 0.0299        | 6.6013 | 2020 | 0.0773          | 0.9373    | 0.9550 | 0.9461 | 0.9807   |
| 0.024         | 6.6667 | 2040 | 0.0789          | 0.9350    | 0.9525 | 0.9437 | 0.9800   |
| 0.0278        | 6.7320 | 2060 | 0.0778          | 0.9367    | 0.9539 | 0.9452 | 0.9804   |
| 0.0378        | 6.7974 | 2080 | 0.0766          | 0.9372    | 0.9545 | 0.9458 | 0.9807   |
| 0.0232        | 6.8627 | 2100 | 0.0775          | 0.9361    | 0.9538 | 0.9449 | 0.9804   |
| 0.0259        | 6.9281 | 2120 | 0.0780          | 0.9353    | 0.9540 | 0.9446 | 0.9802   |
| 0.025         | 6.9935 | 2140 | 0.0777          | 0.9349    | 0.9537 | 0.9442 | 0.9802   |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3