jainamk commited on
Commit
b763bea
·
verified ·
1 Parent(s): 3e5a637

Upload PPO LunarLander-v2 agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.83 +/- 16.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b9274152200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b9274152290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b9274152320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b92741523b0>", "_build": "<function ActorCriticPolicy._build at 0x7b9274152440>", "forward": "<function ActorCriticPolicy.forward at 0x7b92741524d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b9274152560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b92741525f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b9274152680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b9274152710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b92741527a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b9274152830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b92742f57c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707685277863348556, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpgML2PvnK6FkPQNum/ZDKAycY6eurwtQAAgD8AAIA/ZhcQvfIqyD5yiYA6/42Dvq1ZIjwDfs+8AAAAAAAAAADA0u+96Bj/PZKqsz1M5EO+8+0cvNyZBD0AAAAAAAAAAJbPhr53RTs/AJ77vWxrBb8x6Z++r2HKPAAAAAAAAAAAAFyKvcPjJLzHu6a71NaHPNejmT0bSGG9AACAPwAAgD/mOgm+w+uhPrscuD3jkae+eo1lPGLACz4AAAAAAAAAAPPA2b1SrwA+E9jYPMHdfr57Va68Vu4GPAAAAAAAAAAAzSR1vFDzmT4MFKI9LDB6vv+zRD09hDw9AAAAAAAAAACNY28+KKMyP/iH8L3CRLi+55/sPT6ts70AAAAAAAAAADMZaD0paHi6bh2RubH+jbS7gNU6MqypOAAAgD8AAIA/zZXyPUX5/j4Vp1G+MwLNvg/yHD0ORfA7AAAAAAAAAABaYAy+P7sMP6UjxT1lk5a+X/SfvY2zAb0AAAAAAAAAAGagXTzOfZU/0FJVPT9iAr/OGhw9ooXKvAAAAAAAAAAAZrSJPaG8wT7CjB2+XNefvtVNXL3tCc27AAAAAAAAAACaEA499rRvukstMbbEwAGxa7MPuSD+UzUAAIA/AACAP1qxgj0RUVQ+xZMIviyee74oiXe9JoukvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyqwcPvrnmMAWyUS+yMAXSUR0CX1Pd/8VHndX2UKGgGR0ByCYHoouwpaAdNFgFoCEdAl9VHrt3OfXV9lChoBkdAcO3QyylenmgHTSEBaAhHQJfWPX9R77d1fZQoaAZHQHFU/CQ9zOpoB00oAWgIR0CX1ot4iX6ZdX2UKGgGR0A6qOMVDa4+aAdL12gIR0CX1qU8mrsCdX2UKGgGR0BxJvt6X0GvaAdL/mgIR0CX2WqIJqqPdX2UKGgGR0Bx3OUFB6a9aAdL9WgIR0CX2aDRtxdZdX2UKGgGR0BwJqsS00FbaAdNGAFoCEdAl9mYHgP3BnV9lChoBkdAb9vNt65Xl2gHTQQBaAhHQJfZ/cL0Bfd1fZQoaAZHQG5jWwFC9h9oB0v/aAhHQJfaPzpX6qN1fZQoaAZHQG/3P7WNFSdoB00OAWgIR0CX2mk3S8aodX2UKGgGR0BwxfKT0QK8aAdL4GgIR0CX2nwgTyrgdX2UKGgGR0BwXk1Muez2aAdNFAFoCEdAl9qa/dqL0nV9lChoBkdAcvr065oXbmgHTQABaAhHQJfba+ueSSx1fZQoaAZHQHBAXHNorWloB00fAWgIR0CX26SKFZgYdX2UKGgGR0By9W3lS0jUaAdNBgFoCEdAl9vc10knkXV9lChoBkdAcI6JEpiI+GgHTSgBaAhHQJfckkVvddp1fZQoaAZHQHNa0FSsKb9oB00oAWgIR0CX3PyGi5/cdX2UKGgGR0Bx4kbJfYz0aAdL7mgIR0CX3Q4Ia99MdX2UKGgGR0BxVqpeeFtbaAdL9WgIR0CX3SER8MNMdX2UKGgGR0BvNaGFi8WcaAdNEwFoCEdAl92FDOTq0XV9lChoBkdAb4AQtBfKIWgHS/NoCEdAl+A1/+bVjXV9lChoBkdAciWsRxtHhGgHTQoBaAhHQJfgX90ihWZ1fZQoaAZHQHCC9+5OJtVoB0vvaAhHQJfgjTYukDZ1fZQoaAZHQHGrsFINEw5oB00TAWgIR0CX4M6wMYuTdX2UKGgGR0BKkU03wTdtaAdL1mgIR0CX4QPFvQ4TdX2UKGgGR0BtxbGtITXbaAdNDgFoCEdAl+FL2tdRi3V9lChoBkdAcMB4yoGY8mgHTSUBaAhHQJfhYnb7CSB1fZQoaAZHQG6kUygwoLJoB00PAWgIR0CX4ZCqZML4dX2UKGgGR0BynAyULUkOaAdNFwFoCEdAl+HguAZsK3V9lChoBkdAbajv863iJmgHTQMBaAhHQJfjjJ3gUDd1fZQoaAZHQG158rI5o5BoB00fAWgIR0CX44c2BJ7LdX2UKGgGR0Bw0udlNDc/aAdNKwFoCEdAl+Obhm5DqnV9lChoBkdAcIxZi/fwZ2gHTQkBaAhHQJfkMekpI+Z1fZQoaAZHQHCXx+vyLAJoB00LAWgIR0CX5GM98qnWdX2UKGgGR0BxH/wd8zAOaAdNEAFoCEdAl+RvbO/tY3V9lChoBkdAcBibD/EOy2gHTUcBaAhHQJfmX0OEug91fZQoaAZHQHF2jKT0QK9oB00RAWgIR0CX+nSP2f03dX2UKGgGR0Bu0VM23rleaAdNEQFoCEdAl/qdBF/hEXV9lChoBkdAbQ6PTXrdFmgHS/xoCEdAl/qf6fra/XV9lChoBkdAcXuVWS2Yv2gHTQYBaAhHQJf6ti/fwZx1fZQoaAZHQHHAqHbh3q1oB0v2aAhHQJf6z17IDHR1fZQoaAZHQHLfIGt6ol5oB00nAWgIR0CX+1ro4dZJdX2UKGgGR0BxpNJ4B3iaaAdNEwFoCEdAl/t+Wa+ev3V9lChoBkdAcKgux8lXzWgHTRoBaAhHQJf77wF1SwZ1fZQoaAZHQHBjXAymALBoB00lAWgIR0CX/JVZcLSedX2UKGgGR0BvTZOafBepaAdL9mgIR0CX/OiudPLxdX2UKGgGR0BxE9l6JIlMaAdL/WgIR0CX/RAXEZR9dX2UKGgGR0Byg/qJMxoJaAdNBwFoCEdAl/1lyeZof3V9lChoBkdAb4hu/Dcdo2gHS/5oCEdAl/23NC7btnV9lChoBkdAcJPxpcophGgHS/doCEdAl/3FR1oxpXV9lChoBkdAc076Z6Uqx2gHTQ8BaAhHQJf+SprDZUV1fZQoaAZHQHFIQeFL39JoB00DAWgIR0CX//KkEcKgdX2UKGgGR0ByWT62v0ROaAdL9GgIR0CYAOnfEXLvdX2UKGgGR0ByclPhybQUaAdL9GgIR0CYASposZpBdX2UKGgGR0BwUlRm9QGfaAdL/mgIR0CYAWFrEcbSdX2UKGgGR0BttGmLtNSJaAdL+2gIR0CYAXqaPS2IdX2UKGgGR0By3RXPqs2faAdNBAFoCEdAmAJK3y7PIHV9lChoBkdAcVg176YVqWgHTQwBaAhHQJgDOJcgQpZ1fZQoaAZHQHBLVmapgkVoB00sAWgIR0CYA7fP5YYBdX2UKGgGR0Bum4ikfs/qaAdNFQFoCEdAmARGMS9M9XV9lChoBkdAcGms8PnSv2gHTWQBaAhHQJgEd3r2QGR1fZQoaAZHQG6lPE0iyIJoB0vtaAhHQJgEd6Skj5d1fZQoaAZHQHLq51mrbQFoB00UAWgIR0CYBJ0Z3s5XdX2UKGgGR0Bv9vgm7aqTaAdNBQFoCEdAmAS5djXnQ3V9lChoBkdAbbEL5ylvZWgHTQ4BaAhHQJgFPZFocrB1fZQoaAZHQHDkavicXnBoB0v5aAhHQJgFUpUgjhV1fZQoaAZHQHDau8oQWepoB00rAWgIR0CYBVYEnssydX2UKGgGR0BxEAIUrTYvaAdNDQFoCEdAmAd2PDHfdnV9lChoBkdAcN7l2/zreWgHTQABaAhHQJgIPiMo+fR1fZQoaAZHQG4LPXCj1wpoB00GAWgIR0CYCLkrPMSsdX2UKGgGR0BwjXDsMRYjaAdNGgFoCEdAmAjGD6Fds3V9lChoBkdAcojrq+rU9mgHTUIBaAhHQJgKYFt8/lh1fZQoaAZHQG/xYEwFkhBoB0vvaAhHQJgLFimVJMB1fZQoaAZHQHDjvQKKHfxoB0vpaAhHQJgLMK4QSSN1fZQoaAZHQHLcaD5CWu5oB00MAWgIR0CYC0TgEU0vdX2UKGgGR0BwHFFZxJd0aAdL/GgIR0CYC09xZMcqdX2UKGgGR0BxTC21D0DmaAdNQQFoCEdAmAt91uBMBnV9lChoBkdAcIGeUILPU2gHTQABaAhHQJgLlUipvP11fZQoaAZHQHHnzzyz5XVoB001AWgIR0CYC+0zCUHIdX2UKGgGR0Bw7wMx46fbaAdL92gIR0CYDC0xdpqRdX2UKGgGR0ByfWaRZEDyaAdNHQFoCEdAmAxmBJ7LMnV9lChoBkdAcLyn3ta6jGgHTQ4BaAhHQJgMm8VYZEV1fZQoaAZHQG5PHjIaLn9oB00wAWgIR0CYDXtwrDqGdX2UKGgGR0Bwd1WKdhAoaAdNBwFoCEdAmA6DhYNiIHV9lChoBkdAb9Jy8SPEKmgHS+1oCEdAmA8OxwAEMnV9lChoBkdAcjcqcVgx8GgHTRUBaAhHQJgPux9oexR1fZQoaAZHQG+c2Kl54W1oB00RAWgIR0CYEB3xWkrPdX2UKGgGR0Bt9qoybhFWaAdNAwFoCEdAmBFVXFLnLnV9lChoBkdAb/Z8YQ8OkWgHTQkBaAhHQJgSJ6nivPl1fZQoaAZHQHHIJbt7a7FoB00JAWgIR0CYEkH9WIXTdX2UKGgGR0Btq5kAggX/aAdNFgFoCEdAmBNCoOx0MnV9lChoBkdAcNAqh11W82gHTSIBaAhHQJgTUfwI+nt1fZQoaAZHQHBlhqTKT0RoB0v5aAhHQJgTbJKaodd1fZQoaAZHQHE5DriVB2RoB00RAWgIR0CYE4ipeeFtdX2UKGgGR0BwcOVRk3CLaAdNKwFoCEdAmBOMZtNzsHV9lChoBkdAcwjAsTWXkmgHTSgBaAhHQJgTq3vx6OZ1fZQoaAZHQHDi0sOG0u1oB00jAWgIR0CYFDRc/t6YdX2UKGgGR0BuN/HHWBjGaAdNKgFoCEdAmBTcwHqu83V9lChoBkdAcn6H58BuGmgHTSoBaAhHQJgVzZ8KG+N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 324, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd3850fe54c8b122239c11930cb704303adf163ab2d986ec0512329d0118cce
3
+ size 148032
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b9274152200>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b9274152290>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b9274152320>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b92741523b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b9274152440>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b92741524d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b9274152560>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b92741525f0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b9274152680>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b9274152710>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b92741527a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b9274152830>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b92742f57c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1707685277863348556,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpgML2PvnK6FkPQNum/ZDKAycY6eurwtQAAgD8AAIA/ZhcQvfIqyD5yiYA6/42Dvq1ZIjwDfs+8AAAAAAAAAADA0u+96Bj/PZKqsz1M5EO+8+0cvNyZBD0AAAAAAAAAAJbPhr53RTs/AJ77vWxrBb8x6Z++r2HKPAAAAAAAAAAAAFyKvcPjJLzHu6a71NaHPNejmT0bSGG9AACAPwAAgD/mOgm+w+uhPrscuD3jkae+eo1lPGLACz4AAAAAAAAAAPPA2b1SrwA+E9jYPMHdfr57Va68Vu4GPAAAAAAAAAAAzSR1vFDzmT4MFKI9LDB6vv+zRD09hDw9AAAAAAAAAACNY28+KKMyP/iH8L3CRLi+55/sPT6ts70AAAAAAAAAADMZaD0paHi6bh2RubH+jbS7gNU6MqypOAAAgD8AAIA/zZXyPUX5/j4Vp1G+MwLNvg/yHD0ORfA7AAAAAAAAAABaYAy+P7sMP6UjxT1lk5a+X/SfvY2zAb0AAAAAAAAAAGagXTzOfZU/0FJVPT9iAr/OGhw9ooXKvAAAAAAAAAAAZrSJPaG8wT7CjB2+XNefvtVNXL3tCc27AAAAAAAAAACaEA499rRvukstMbbEwAGxa7MPuSD+UzUAAIA/AACAP1qxgj0RUVQ+xZMIviyee74oiXe9JoukvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyqwcPvrnmMAWyUS+yMAXSUR0CX1Pd/8VHndX2UKGgGR0ByCYHoouwpaAdNFgFoCEdAl9VHrt3OfXV9lChoBkdAcO3QyylenmgHTSEBaAhHQJfWPX9R77d1fZQoaAZHQHFU/CQ9zOpoB00oAWgIR0CX1ot4iX6ZdX2UKGgGR0A6qOMVDa4+aAdL12gIR0CX1qU8mrsCdX2UKGgGR0BxJvt6X0GvaAdL/mgIR0CX2WqIJqqPdX2UKGgGR0Bx3OUFB6a9aAdL9WgIR0CX2aDRtxdZdX2UKGgGR0BwJqsS00FbaAdNGAFoCEdAl9mYHgP3BnV9lChoBkdAb9vNt65Xl2gHTQQBaAhHQJfZ/cL0Bfd1fZQoaAZHQG5jWwFC9h9oB0v/aAhHQJfaPzpX6qN1fZQoaAZHQG/3P7WNFSdoB00OAWgIR0CX2mk3S8aodX2UKGgGR0BwxfKT0QK8aAdL4GgIR0CX2nwgTyrgdX2UKGgGR0BwXk1Muez2aAdNFAFoCEdAl9qa/dqL0nV9lChoBkdAcvr065oXbmgHTQABaAhHQJfba+ueSSx1fZQoaAZHQHBAXHNorWloB00fAWgIR0CX26SKFZgYdX2UKGgGR0By9W3lS0jUaAdNBgFoCEdAl9vc10knkXV9lChoBkdAcI6JEpiI+GgHTSgBaAhHQJfckkVvddp1fZQoaAZHQHNa0FSsKb9oB00oAWgIR0CX3PyGi5/cdX2UKGgGR0Bx4kbJfYz0aAdL7mgIR0CX3Q4Ia99MdX2UKGgGR0BxVqpeeFtbaAdL9WgIR0CX3SER8MNMdX2UKGgGR0BvNaGFi8WcaAdNEwFoCEdAl92FDOTq0XV9lChoBkdAb4AQtBfKIWgHS/NoCEdAl+A1/+bVjXV9lChoBkdAciWsRxtHhGgHTQoBaAhHQJfgX90ihWZ1fZQoaAZHQHCC9+5OJtVoB0vvaAhHQJfgjTYukDZ1fZQoaAZHQHGrsFINEw5oB00TAWgIR0CX4M6wMYuTdX2UKGgGR0BKkU03wTdtaAdL1mgIR0CX4QPFvQ4TdX2UKGgGR0BtxbGtITXbaAdNDgFoCEdAl+FL2tdRi3V9lChoBkdAcMB4yoGY8mgHTSUBaAhHQJfhYnb7CSB1fZQoaAZHQG6kUygwoLJoB00PAWgIR0CX4ZCqZML4dX2UKGgGR0BynAyULUkOaAdNFwFoCEdAl+HguAZsK3V9lChoBkdAbajv863iJmgHTQMBaAhHQJfjjJ3gUDd1fZQoaAZHQG158rI5o5BoB00fAWgIR0CX44c2BJ7LdX2UKGgGR0Bw0udlNDc/aAdNKwFoCEdAl+Obhm5DqnV9lChoBkdAcIxZi/fwZ2gHTQkBaAhHQJfkMekpI+Z1fZQoaAZHQHCXx+vyLAJoB00LAWgIR0CX5GM98qnWdX2UKGgGR0BxH/wd8zAOaAdNEAFoCEdAl+RvbO/tY3V9lChoBkdAcBibD/EOy2gHTUcBaAhHQJfmX0OEug91fZQoaAZHQHF2jKT0QK9oB00RAWgIR0CX+nSP2f03dX2UKGgGR0Bu0VM23rleaAdNEQFoCEdAl/qdBF/hEXV9lChoBkdAbQ6PTXrdFmgHS/xoCEdAl/qf6fra/XV9lChoBkdAcXuVWS2Yv2gHTQYBaAhHQJf6ti/fwZx1fZQoaAZHQHHAqHbh3q1oB0v2aAhHQJf6z17IDHR1fZQoaAZHQHLfIGt6ol5oB00nAWgIR0CX+1ro4dZJdX2UKGgGR0BxpNJ4B3iaaAdNEwFoCEdAl/t+Wa+ev3V9lChoBkdAcKgux8lXzWgHTRoBaAhHQJf77wF1SwZ1fZQoaAZHQHBjXAymALBoB00lAWgIR0CX/JVZcLSedX2UKGgGR0BvTZOafBepaAdL9mgIR0CX/OiudPLxdX2UKGgGR0BxE9l6JIlMaAdL/WgIR0CX/RAXEZR9dX2UKGgGR0Byg/qJMxoJaAdNBwFoCEdAl/1lyeZof3V9lChoBkdAb4hu/Dcdo2gHS/5oCEdAl/23NC7btnV9lChoBkdAcJPxpcophGgHS/doCEdAl/3FR1oxpXV9lChoBkdAc076Z6Uqx2gHTQ8BaAhHQJf+SprDZUV1fZQoaAZHQHFIQeFL39JoB00DAWgIR0CX//KkEcKgdX2UKGgGR0ByWT62v0ROaAdL9GgIR0CYAOnfEXLvdX2UKGgGR0ByclPhybQUaAdL9GgIR0CYASposZpBdX2UKGgGR0BwUlRm9QGfaAdL/mgIR0CYAWFrEcbSdX2UKGgGR0BttGmLtNSJaAdL+2gIR0CYAXqaPS2IdX2UKGgGR0By3RXPqs2faAdNBAFoCEdAmAJK3y7PIHV9lChoBkdAcVg176YVqWgHTQwBaAhHQJgDOJcgQpZ1fZQoaAZHQHBLVmapgkVoB00sAWgIR0CYA7fP5YYBdX2UKGgGR0Bum4ikfs/qaAdNFQFoCEdAmARGMS9M9XV9lChoBkdAcGms8PnSv2gHTWQBaAhHQJgEd3r2QGR1fZQoaAZHQG6lPE0iyIJoB0vtaAhHQJgEd6Skj5d1fZQoaAZHQHLq51mrbQFoB00UAWgIR0CYBJ0Z3s5XdX2UKGgGR0Bv9vgm7aqTaAdNBQFoCEdAmAS5djXnQ3V9lChoBkdAbbEL5ylvZWgHTQ4BaAhHQJgFPZFocrB1fZQoaAZHQHDkavicXnBoB0v5aAhHQJgFUpUgjhV1fZQoaAZHQHDau8oQWepoB00rAWgIR0CYBVYEnssydX2UKGgGR0BxEAIUrTYvaAdNDQFoCEdAmAd2PDHfdnV9lChoBkdAcN7l2/zreWgHTQABaAhHQJgIPiMo+fR1fZQoaAZHQG4LPXCj1wpoB00GAWgIR0CYCLkrPMSsdX2UKGgGR0BwjXDsMRYjaAdNGgFoCEdAmAjGD6Fds3V9lChoBkdAcojrq+rU9mgHTUIBaAhHQJgKYFt8/lh1fZQoaAZHQG/xYEwFkhBoB0vvaAhHQJgLFimVJMB1fZQoaAZHQHDjvQKKHfxoB0vpaAhHQJgLMK4QSSN1fZQoaAZHQHLcaD5CWu5oB00MAWgIR0CYC0TgEU0vdX2UKGgGR0BwHFFZxJd0aAdL/GgIR0CYC09xZMcqdX2UKGgGR0BxTC21D0DmaAdNQQFoCEdAmAt91uBMBnV9lChoBkdAcIGeUILPU2gHTQABaAhHQJgLlUipvP11fZQoaAZHQHHnzzyz5XVoB001AWgIR0CYC+0zCUHIdX2UKGgGR0Bw7wMx46fbaAdL92gIR0CYDC0xdpqRdX2UKGgGR0ByfWaRZEDyaAdNHQFoCEdAmAxmBJ7LMnV9lChoBkdAcLyn3ta6jGgHTQ4BaAhHQJgMm8VYZEV1fZQoaAZHQG5PHjIaLn9oB00wAWgIR0CYDXtwrDqGdX2UKGgGR0Bwd1WKdhAoaAdNBwFoCEdAmA6DhYNiIHV9lChoBkdAb9Jy8SPEKmgHS+1oCEdAmA8OxwAEMnV9lChoBkdAcjcqcVgx8GgHTRUBaAhHQJgPux9oexR1fZQoaAZHQG+c2Kl54W1oB00RAWgIR0CYEB3xWkrPdX2UKGgGR0Bt9qoybhFWaAdNAwFoCEdAmBFVXFLnLnV9lChoBkdAb/Z8YQ8OkWgHTQkBaAhHQJgSJ6nivPl1fZQoaAZHQHHIJbt7a7FoB00JAWgIR0CYEkH9WIXTdX2UKGgGR0Btq5kAggX/aAdNFgFoCEdAmBNCoOx0MnV9lChoBkdAcNAqh11W82gHTSIBaAhHQJgTUfwI+nt1fZQoaAZHQHBlhqTKT0RoB0v5aAhHQJgTbJKaodd1fZQoaAZHQHE5DriVB2RoB00RAWgIR0CYE4ipeeFtdX2UKGgGR0BwcOVRk3CLaAdNKwFoCEdAmBOMZtNzsHV9lChoBkdAcwjAsTWXkmgHTSgBaAhHQJgTq3vx6OZ1fZQoaAZHQHDi0sOG0u1oB00jAWgIR0CYFDRc/t6YdX2UKGgGR0BuN/HHWBjGaAdNKgFoCEdAmBTcwHqu83V9lChoBkdAcn6H58BuGmgHTSoBaAhHQJgVzZ8KG+N1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 324,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccd0c08d75922110405171308d19572806fe38d36850690a949539921092ce37
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eefdec1f7e44aa99dd646c665617a385b5eb293f0480202ffdbdc6d163afc00
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (195 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.8279144, "std_reward": 16.22092856448615, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-11T22:09:15.871208"}