jaeger1 commited on
Commit
a08bd38
·
1 Parent(s): 3426203

layoutlm-funsd

Browse files
README.md CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.7079
19
- - Answer: {'precision': 0.7141316073354909, 'recall': 0.8182941903584673, 'f1': 0.7626728110599078, 'number': 809}
20
- - Header: {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119}
21
- - Question: {'precision': 0.7706502636203867, 'recall': 0.8234741784037559, 'f1': 0.7961870177031322, 'number': 1065}
22
- - Overall Precision: 0.7205
23
- - Overall Recall: 0.7918
24
- - Overall F1: 0.7545
25
- - Overall Accuracy: 0.8059
26
 
27
  ## Model description
28
 
@@ -52,23 +52,23 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 1.8289 | 1.0 | 10 | 1.6208 | {'precision': 0.012987012987012988, 'recall': 0.016069221260815822, 'f1': 0.014364640883977901, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1291005291005291, 'recall': 0.11455399061032864, 'f1': 0.12139303482587065, 'number': 1065} | 0.0694 | 0.0677 | 0.0685 | 0.3686 |
58
- | 1.4956 | 2.0 | 20 | 1.2610 | {'precision': 0.13918305597579425, 'recall': 0.11372064276885044, 'f1': 0.1251700680272109, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45817912657290893, 'recall': 0.5812206572769953, 'f1': 0.5124172185430463, 'number': 1065} | 0.3534 | 0.3567 | 0.3551 | 0.5813 |
59
- | 1.1192 | 3.0 | 30 | 0.9572 | {'precision': 0.464327485380117, 'recall': 0.4907292954264524, 'f1': 0.47716346153846156, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5908720456397718, 'recall': 0.6807511737089202, 'f1': 0.6326352530541013, 'number': 1065} | 0.5315 | 0.5630 | 0.5468 | 0.6904 |
60
- | 0.856 | 4.0 | 40 | 0.7960 | {'precision': 0.6064864864864865, 'recall': 0.6934487021013597, 'f1': 0.6470588235294117, 'number': 809} | {'precision': 0.15789473684210525, 'recall': 0.07563025210084033, 'f1': 0.10227272727272725, 'number': 119} | {'precision': 0.6779059449866903, 'recall': 0.7173708920187793, 'f1': 0.6970802919708029, 'number': 1065} | 0.6325 | 0.6693 | 0.6504 | 0.7536 |
61
- | 0.689 | 5.0 | 50 | 0.7273 | {'precision': 0.635593220338983, 'recall': 0.7416563658838071, 'f1': 0.6845407872219051, 'number': 809} | {'precision': 0.24719101123595505, 'recall': 0.18487394957983194, 'f1': 0.21153846153846156, 'number': 119} | {'precision': 0.7046046915725456, 'recall': 0.7615023474178404, 'f1': 0.7319494584837544, 'number': 1065} | 0.6561 | 0.7190 | 0.6861 | 0.7783 |
62
- | 0.566 | 6.0 | 60 | 0.6986 | {'precision': 0.6628029504741834, 'recall': 0.7775030902348579, 'f1': 0.715585893060296, 'number': 809} | {'precision': 0.3132530120481928, 'recall': 0.2184873949579832, 'f1': 0.25742574257425743, 'number': 119} | {'precision': 0.698220064724919, 'recall': 0.8103286384976526, 'f1': 0.7501086484137333, 'number': 1065} | 0.6693 | 0.7617 | 0.7125 | 0.7867 |
63
- | 0.5056 | 7.0 | 70 | 0.6756 | {'precision': 0.65625, 'recall': 0.7787391841779975, 'f1': 0.7122668174109665, 'number': 809} | {'precision': 0.32558139534883723, 'recall': 0.23529411764705882, 'f1': 0.2731707317073171, 'number': 119} | {'precision': 0.7231298366294067, 'recall': 0.7896713615023474, 'f1': 0.7549371633752243, 'number': 1065} | 0.6786 | 0.7521 | 0.7135 | 0.7954 |
64
- | 0.455 | 8.0 | 80 | 0.6797 | {'precision': 0.6945975744211687, 'recall': 0.7787391841779975, 'f1': 0.7342657342657343, 'number': 809} | {'precision': 0.32075471698113206, 'recall': 0.2857142857142857, 'f1': 0.30222222222222217, 'number': 119} | {'precision': 0.732606873428332, 'recall': 0.8206572769953052, 'f1': 0.7741364038972542, 'number': 1065} | 0.6972 | 0.7717 | 0.7326 | 0.8034 |
65
- | 0.4034 | 9.0 | 90 | 0.6765 | {'precision': 0.7026737967914438, 'recall': 0.8121137206427689, 'f1': 0.7534403669724771, 'number': 809} | {'precision': 0.33962264150943394, 'recall': 0.3025210084033613, 'f1': 0.32, 'number': 119} | {'precision': 0.7434599156118143, 'recall': 0.8272300469483568, 'f1': 0.7831111111111111, 'number': 1065} | 0.7071 | 0.7898 | 0.7461 | 0.8034 |
66
- | 0.362 | 10.0 | 100 | 0.6767 | {'precision': 0.694591728525981, 'recall': 0.8096415327564895, 'f1': 0.7477168949771691, 'number': 809} | {'precision': 0.3394495412844037, 'recall': 0.31092436974789917, 'f1': 0.324561403508772, 'number': 119} | {'precision': 0.7523645743766122, 'recall': 0.8215962441314554, 'f1': 0.7854578096947935, 'number': 1065} | 0.7074 | 0.7863 | 0.7448 | 0.8090 |
67
- | 0.3283 | 11.0 | 110 | 0.6988 | {'precision': 0.7081545064377682, 'recall': 0.8158220024721878, 'f1': 0.7581849511774841, 'number': 809} | {'precision': 0.3557692307692308, 'recall': 0.31092436974789917, 'f1': 0.33183856502242154, 'number': 119} | {'precision': 0.7775800711743772, 'recall': 0.8206572769953052, 'f1': 0.7985381452718137, 'number': 1065} | 0.7273 | 0.7883 | 0.7566 | 0.8092 |
68
- | 0.3196 | 12.0 | 120 | 0.6961 | {'precision': 0.7017167381974249, 'recall': 0.8084054388133498, 'f1': 0.7512923607122343, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.31092436974789917, 'f1': 0.32173913043478264, 'number': 119} | {'precision': 0.7717013888888888, 'recall': 0.8347417840375587, 'f1': 0.8019846639603068, 'number': 1065} | 0.7198 | 0.7928 | 0.7545 | 0.8102 |
69
- | 0.2943 | 13.0 | 130 | 0.7015 | {'precision': 0.7037433155080214, 'recall': 0.8133498145859085, 'f1': 0.7545871559633027, 'number': 809} | {'precision': 0.3391304347826087, 'recall': 0.3277310924369748, 'f1': 0.3333333333333333, 'number': 119} | {'precision': 0.7720524017467248, 'recall': 0.8300469483568075, 'f1': 0.7999999999999999, 'number': 1065} | 0.7203 | 0.7933 | 0.7550 | 0.8074 |
70
- | 0.2843 | 14.0 | 140 | 0.7059 | {'precision': 0.7074468085106383, 'recall': 0.8220024721878862, 'f1': 0.7604345340194397, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} | {'precision': 0.7664618086040387, 'recall': 0.819718309859155, 'f1': 0.7921960072595282, 'number': 1065} | 0.7152 | 0.7913 | 0.7513 | 0.8063 |
71
- | 0.2779 | 15.0 | 150 | 0.7079 | {'precision': 0.7141316073354909, 'recall': 0.8182941903584673, 'f1': 0.7626728110599078, 'number': 809} | {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} | {'precision': 0.7706502636203867, 'recall': 0.8234741784037559, 'f1': 0.7961870177031322, 'number': 1065} | 0.7205 | 0.7918 | 0.7545 | 0.8059 |
72
 
73
 
74
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.6657
19
+ - Answer: {'precision': 0.7226519337016575, 'recall': 0.8084054388133498, 'f1': 0.763127187864644, 'number': 809}
20
+ - Header: {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119}
21
+ - Question: {'precision': 0.7931960608773501, 'recall': 0.831924882629108, 'f1': 0.8120989917506873, 'number': 1065}
22
+ - Overall Precision: 0.7331
23
+ - Overall Recall: 0.7923
24
+ - Overall F1: 0.7615
25
+ - Overall Accuracy: 0.8136
26
 
27
  ## Model description
28
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7892 | 1.0 | 10 | 1.6086 | {'precision': 0.020948180815876516, 'recall': 0.023485784919653894, 'f1': 0.022144522144522148, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20356472795497185, 'recall': 0.20375586854460093, 'f1': 0.20366025340215863, 'number': 1065} | 0.1196 | 0.1184 | 0.1190 | 0.3742 |
58
+ | 1.4438 | 2.0 | 20 | 1.2175 | {'precision': 0.22015915119363394, 'recall': 0.20519159456118666, 'f1': 0.2124120281509917, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4544037412314887, 'recall': 0.5474178403755868, 'f1': 0.4965928449744464, 'number': 1065} | 0.3677 | 0.3758 | 0.3717 | 0.5883 |
59
+ | 1.0512 | 3.0 | 30 | 0.9159 | {'precision': 0.5192519251925193, 'recall': 0.5834363411619283, 'f1': 0.5494761350407451, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6103327495621717, 'recall': 0.6544600938967137, 'f1': 0.6316266425011329, 'number': 1065} | 0.5615 | 0.5866 | 0.5737 | 0.7102 |
60
+ | 0.8045 | 4.0 | 40 | 0.7549 | {'precision': 0.6132264529058116, 'recall': 0.7564894932014833, 'f1': 0.6773657996679578, 'number': 809} | {'precision': 0.22, 'recall': 0.09243697478991597, 'f1': 0.13017751479289943, 'number': 119} | {'precision': 0.6795580110497238, 'recall': 0.6929577464788732, 'f1': 0.6861924686192468, 'number': 1065} | 0.6378 | 0.6829 | 0.6596 | 0.7538 |
61
+ | 0.6559 | 5.0 | 50 | 0.6887 | {'precision': 0.6546227417640808, 'recall': 0.761433868974042, 'f1': 0.704, 'number': 809} | {'precision': 0.25, 'recall': 0.16806722689075632, 'f1': 0.20100502512562815, 'number': 119} | {'precision': 0.6964285714285714, 'recall': 0.7323943661971831, 'f1': 0.7139588100686498, 'number': 1065} | 0.6614 | 0.7105 | 0.6851 | 0.7764 |
62
+ | 0.547 | 6.0 | 60 | 0.6515 | {'precision': 0.6659793814432989, 'recall': 0.7985166872682324, 'f1': 0.7262507026419337, 'number': 809} | {'precision': 0.2891566265060241, 'recall': 0.20168067226890757, 'f1': 0.23762376237623764, 'number': 119} | {'precision': 0.7140439932318104, 'recall': 0.7924882629107981, 'f1': 0.7512238540275923, 'number': 1065} | 0.6774 | 0.7597 | 0.7162 | 0.7928 |
63
+ | 0.4923 | 7.0 | 70 | 0.6337 | {'precision': 0.6784188034188035, 'recall': 0.7849196538936959, 'f1': 0.7277936962750717, 'number': 809} | {'precision': 0.2761904761904762, 'recall': 0.24369747899159663, 'f1': 0.2589285714285714, 'number': 119} | {'precision': 0.7371575342465754, 'recall': 0.8084507042253521, 'f1': 0.7711598746081505, 'number': 1065} | 0.6904 | 0.7652 | 0.7258 | 0.8052 |
64
+ | 0.4463 | 8.0 | 80 | 0.6478 | {'precision': 0.7045454545454546, 'recall': 0.7663782447466008, 'f1': 0.7341622261693309, 'number': 809} | {'precision': 0.2831858407079646, 'recall': 0.2689075630252101, 'f1': 0.27586206896551724, 'number': 119} | {'precision': 0.751937984496124, 'recall': 0.819718309859155, 'f1': 0.7843665768194069, 'number': 1065} | 0.7080 | 0.7652 | 0.7355 | 0.8048 |
65
+ | 0.3974 | 9.0 | 90 | 0.6389 | {'precision': 0.7029379760609358, 'recall': 0.7985166872682324, 'f1': 0.7476851851851851, 'number': 809} | {'precision': 0.2748091603053435, 'recall': 0.3025210084033613, 'f1': 0.288, 'number': 119} | {'precision': 0.7609254498714653, 'recall': 0.8338028169014085, 'f1': 0.7956989247311828, 'number': 1065} | 0.7082 | 0.7878 | 0.7458 | 0.8060 |
66
+ | 0.3599 | 10.0 | 100 | 0.6429 | {'precision': 0.7177777777777777, 'recall': 0.7985166872682324, 'f1': 0.7559976594499708, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7795275590551181, 'recall': 0.8366197183098592, 'f1': 0.8070652173913043, 'number': 1065} | 0.7274 | 0.7888 | 0.7569 | 0.8139 |
67
+ | 0.3227 | 11.0 | 110 | 0.6510 | {'precision': 0.710239651416122, 'recall': 0.8059332509270705, 'f1': 0.755066589461494, 'number': 809} | {'precision': 0.28205128205128205, 'recall': 0.2773109243697479, 'f1': 0.2796610169491525, 'number': 119} | {'precision': 0.7882037533512064, 'recall': 0.828169014084507, 'f1': 0.8076923076923077, 'number': 1065} | 0.7275 | 0.7863 | 0.7557 | 0.8111 |
68
+ | 0.3156 | 12.0 | 120 | 0.6579 | {'precision': 0.7245575221238938, 'recall': 0.8096415327564895, 'f1': 0.7647402218330415, 'number': 809} | {'precision': 0.2920353982300885, 'recall': 0.2773109243697479, 'f1': 0.28448275862068967, 'number': 119} | {'precision': 0.7926391382405745, 'recall': 0.8291079812206573, 'f1': 0.8104635153740247, 'number': 1065} | 0.7372 | 0.7883 | 0.7619 | 0.8123 |
69
+ | 0.2935 | 13.0 | 130 | 0.6596 | {'precision': 0.7119386637458927, 'recall': 0.8034610630407911, 'f1': 0.7549361207897795, 'number': 809} | {'precision': 0.2846715328467153, 'recall': 0.3277310924369748, 'f1': 0.3046875, 'number': 119} | {'precision': 0.7852112676056338, 'recall': 0.8375586854460094, 'f1': 0.8105406633348478, 'number': 1065} | 0.7232 | 0.7933 | 0.7566 | 0.8131 |
70
+ | 0.2814 | 14.0 | 140 | 0.6629 | {'precision': 0.7189901207464325, 'recall': 0.8096415327564895, 'f1': 0.7616279069767442, 'number': 809} | {'precision': 0.2923076923076923, 'recall': 0.31932773109243695, 'f1': 0.3052208835341365, 'number': 119} | {'precision': 0.7924528301886793, 'recall': 0.828169014084507, 'f1': 0.8099173553719008, 'number': 1065} | 0.7312 | 0.7903 | 0.7596 | 0.8132 |
71
+ | 0.2762 | 15.0 | 150 | 0.6657 | {'precision': 0.7226519337016575, 'recall': 0.8084054388133498, 'f1': 0.763127187864644, 'number': 809} | {'precision': 0.29545454545454547, 'recall': 0.3277310924369748, 'f1': 0.3107569721115538, 'number': 119} | {'precision': 0.7931960608773501, 'recall': 0.831924882629108, 'f1': 0.8120989917506873, 'number': 1065} | 0.7331 | 0.7923 | 0.7615 | 0.8136 |
72
 
73
 
74
  ### Framework versions
logs/events.out.tfevents.1685715092.kimv.11340.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b45e614d00f7410d393e3486bcc61238e3d10e004c7257afe21565f475b51553
3
- size 4918
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0c623cf97bf3bb988f903fcffe5ef866c4a5c1708aadd3862c5013c2010a669
3
+ size 14394
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:95944e9947ec3cdb15cbd6c453781cdb1a45a4ac05d702983696913af834bef6
3
  size 450608389
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a730169c77ae89e08600e8ae2f618a97790bf70a058fb92e2b12aaeae2604179
3
  size 450608389