jacobhoffmann commited on
Commit
42f2eeb
·
verified ·
1 Parent(s): 3a4f765

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -141
README.md CHANGED
@@ -1,196 +1,141 @@
1
  ---
 
 
 
 
 
2
  pipeline_tag: text-generation
3
  tags:
4
  - code
 
 
 
5
  ---
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
 
 
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
 
89
 
90
- [More Information Needed]
91
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
-
144
- - **Hardware Type:** [More Information Needed]
145
- - **Hours used:** [More Information Needed]
146
- - **Cloud Provider:** [More Information Needed]
147
- - **Compute Region:** [More Information Needed]
148
- - **Carbon Emitted:** [More Information Needed]
149
-
150
- ## Technical Specifications [optional]
151
-
152
- ### Model Architecture and Objective
153
-
154
- [More Information Needed]
155
-
156
- ### Compute Infrastructure
157
-
158
- [More Information Needed]
159
 
160
- #### Hardware
161
-
162
- [More Information Needed]
163
-
164
- #### Software
165
-
166
- [More Information Needed]
167
 
168
- ## Citation [optional]
169
 
170
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
171
 
172
  **BibTeX:**
173
-
174
- [More Information Needed]
175
-
176
- **APA:**
177
-
178
- [More Information Needed]
179
-
180
- ## Glossary [optional]
181
-
182
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
183
-
184
- [More Information Needed]
185
-
186
- ## More Information [optional]
187
-
188
- [More Information Needed]
189
-
190
- ## Model Card Authors [optional]
191
-
192
- [More Information Needed]
193
 
194
  ## Model Card Contact
195
 
196
- [More Information Needed]
 
 
1
  ---
2
+ license: llama2
3
+ language:
4
+ - en
5
+ base_model:
6
+ - meta-llama/CodeLlama-13b-hf
7
  pipeline_tag: text-generation
8
  tags:
9
  - code
10
+ - gguf
11
+ - llama.cpp
12
+ - llmstudio
13
  ---
14
+ # Model Card for TestGen-Dart v0.2 (GGUF Version)
15
 
16
+ This model card provides information about **TestGen-Dart v0.2 (GGUF Version)**, a fine-tuned version of Meta's Code Llama 13B model, optimized for generating unit tests in Dart for mobile applications. This GGUF-quantized model is designed to run efficiently with frameworks like **LLMStudio** and **llama.cpp**, enabling deployment on resource-constrained hardware while maintaining robust performance.
17
 
18
+ ---
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
 
24
+ **TestGen-Dart v0.2** is a fine-tuned version of Code Llama 13B, specifically adapted for generating unit test cases for Dart code. The GGUF quantization enables its use on lightweight, consumer-grade systems without significant performance loss.
 
25
 
26
+ - **Developed by:** Jacob Hoffmann, Demian Frister (Karlsruhe Institute of Technology - KIT, AIFB-BIS)
27
+ - **Funded by:** Helmholtz Association's Initiative and Networking Fund on the HAICORE@FZJ partition
28
+ - **Shared by:** Jacob Hoffmann, Demian Frister
29
+ - **Model type:** Fine-tuned Code Llama 13B for test generation in Dart
30
+ - **Language(s):** English
31
+ - **License:** LLaMA 2 Community License
32
+ - **Finetuned from model:** Meta's Code Llama 13B
33
 
34
+ ### Model Sources
 
 
 
 
 
 
35
 
36
+ - **Repository:** [GitHub Repository](https://github.com/example/repo) (placeholder)
37
+ - **Paper:** ["Generating Software Tests for Mobile Applications Using Fine-Tuned Large Language Models"](https://doi.org/10.1145/3644032.3644454) (published in AST '24)
38
+ - **Demo:** Coming soon
39
 
40
+ ---
 
 
 
 
41
 
42
  ## Uses
43
 
 
 
44
  ### Direct Use
45
 
46
+ The model can be used in a zero-shot setting with **llama.cpp** or **LLMStudio** to generate unit tests in Dart. Provide the class code as input, and the model outputs structured unit tests using Dart's `test` package.
 
 
47
 
48
+ ### Downstream Use
49
 
50
+ This model is suitable for integration into developer tools, IDE extensions, or continuous integration pipelines to automate test generation for Dart-based applications.
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
+ - Do not use this model for tasks unrelated to Dart test generation.
55
+ - Avoid using this model to improve or train other LLMs not based on LLaMA or its derivatives, per the LLaMA 2 Community License.
56
+ - Misuse for malicious purposes, such as generating incorrect or harmful test cases, is prohibited.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ ---
 
 
59
 
60
+ ## Running the GGUF Model with llama.cpp
61
+
62
+ To use this GGUF quantized model with llama.cpp:
63
+
64
+ 1. Clone the llama.cpp repository and build the binaries:
65
+ ```bash
66
+ git clone https://github.com/ggerganov/llama.cpp
67
+ cd llama.cpp
68
+ make
69
+ ```
70
+ 2. Place the GGUF file in the models directory:
71
+ ```bash
72
+ mkdir -p models/testgen-dart-v0.2
73
+ mv /path/to/CodeLlama-13B-TestGen-Dart_v0.2.gguf models/testgen-dart-v0.2/
74
+ ```
75
+ 3. Run the model:
76
+ ```bash
77
+ ./main -m models/testgen-dart-v0.2/CodeLlama-13B-TestGen-Dart_v0.2.gguf --prompt "Generate unit tests in Dart for the following class:\nclass Calculator { int add(int a, int b) { return a + b; } }"
78
+ ```
79
+
80
  ## Training Details
81
 
82
  ### Training Data
83
 
84
+ The fine-tuning dataset consists of **16,252 Dart code-test pairs** extracted from open-source GitHub repositories using Google BigQuery. The data was subjected to quality filtering and deduplication to ensure high relevance and consistency.
 
 
 
 
85
 
86
+ ### Training Procedure
87
 
88
+ - **Fine-tuning Approach:** Supervised Fine-Tuning (SFT) with QLoRA for memory efficiency.
89
+ - **Hardware:** Training was conducted on a single NVIDIA A100 GPU.
90
+ - **Optimization:** Flash Attention 2 was utilized for enhanced performance.
91
+ - **Duration:** The training process ran for up to 32 hours.
92
 
93
+ ### Training Hyperparameters
94
 
95
+ - **Mixed Precision:** FP16
96
+ - **Optimizer:** AdamW
97
+ - **Learning Rate:** 5e-5
98
+ - **Epochs:** 3
99
 
100
+ ### Environmental Impact
101
 
102
+ - **Hardware Type:** NVIDIA A100 GPU
103
+ - **Hours Used:** 32 hours
104
+ - **Carbon Emitted:** 13.099 kgCO2eq
105
 
106
+ ---
 
 
 
 
107
 
108
  ## Evaluation
109
 
 
 
110
  ### Testing Data, Factors & Metrics
111
 
112
+ - **Testing Data:** A subset of **42 Dart files** from the training dataset, evaluated in a zero-shot setting.
113
+ - **Factors:** Syntax correctness, functional correctness.
114
+ - **Metrics:** pass@1, syntax error rate, functional correctness rate.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  ### Results
117
 
118
+ - **Syntax Correctness:** +76% improvement compared to the base model.
119
+ - **Functional Correctness:** +16.67% improvement compared to the base model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ ---
 
 
 
 
 
 
122
 
123
+ ## Citation
124
 
125
+ If you use this model in your research, please cite:
126
 
127
  **BibTeX:**
128
+ ```bibtex
129
+ @inproceedings{hoffmann2024testgen,
130
+ title={Generating Software Tests for Mobile Applications Using Fine-Tuned Large Language Models},
131
+ author={Hoffmann, Jacob and Frister, Demian},
132
+ booktitle={Proceedings of the 5th ACM/IEEE International Conference on Automation of Software Test (AST 2024)},
133
+ year={2024},
134
+ doi={10.1145/3644032.3644454}
135
+ }
136
+ ```
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  ## Model Card Contact
139
 
140
+ - **Jacob Hoffmann**: [[email protected]](mailto:[email protected])
141
+ - **Demian Frister**: [[email protected]](mailto:[email protected])