jackoyoungblood commited on
Commit
e30c5a7
·
1 Parent(s): 7e89d38

23 Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.41 +/- 24.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f855d783700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f855d783790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f855d783820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f855d7838b0>", "_build": "<function ActorCriticPolicy._build at 0x7f855d783940>", "forward": "<function ActorCriticPolicy.forward at 0x7f855d7839d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f855d783a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f855d783af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f855d783b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f855d783c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f855d783ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f855d783d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f855d7814e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673549118810185017, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACY7uT0p+Bu6WSU6ONW/5zKZxVA4CEVZtwAAgD8AAAAAGsmcPQTKsT+uFMU+HYKPvr1CrLxSvxI+AAAAAAAAAAB291m+Kp9ZPymmqj1pFLy+HRT9vcxqjj0AAAAAAAAAAM34Vbz5JSY/w0D6O4Awcb7FmTM6cid8ugAAAAAAAAAAM3yTPFdaQzwx2sU9s8/9vS0j4TwKFMu8AAAAAAAAAACa2k09boyePfW2UT2LIWi+pxuWPdaUtT0AAAAAAAAAAE2mCT3Xv3m7D/0pvpp1Mb6C9868iZgBPwAAgD8AAAAAhgIXPv74jD8V1RA+6QW4vle+0T2Kdw09AAAAAAAAAAAIT4u+i32PPyG2s70R8c6+pc9hvikbFT4AAAAAAAAAALNZkD2rIJA9LFSfvYQFa77ky9I8QhukPQAAAAAAAAAAwDHDvT0kLbuCyka5F4GPPA10mDzo5Ha9AAAAAAAAgD/NG8Q8hZ+iu71AC7z8nns8lJDavFa+Vz0AAIA/AACAP2ZgzLzEo1U+UxZsPFsYf74n4hc806HRvAAAAAAAAAAAAFqmPHFqYLspdDE8Bl2PPKMYkDxdH3a9AACAPwAAgD/aCIE9WUjwPkMkT72Ejnq+xvFoPAL1KT0AAAAAAAAAABrWFb2P0na66cmJu82VjDwBdBy7wDR1vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJsed0sGdckCUhpRSlIwBbJRNbgGMAXSUR0CYc3PJq7AddX2UKGgGaAloD0MIo1wav3A8bUCUhpRSlGgVTScCaBZHQJh0dSR8twt1fZQoaAZoCWgPQwirmEo/4XhTQJSGlFKUaBVL0WgWR0CYdmpiZv1ldX2UKGgGaAloD0MIAU7v4v0Lb0CUhpRSlGgVTW0BaBZHQJh25GMGX5Z1fZQoaAZoCWgPQwhFEVK38xRxQJSGlFKUaBVNTQFoFkdAmIwEDMeOn3V9lChoBmgJaA9DCFuYhXbOuHFAlIaUUpRoFU1vAWgWR0CYjBOearmydX2UKGgGaAloD0MIOxkcJS91cUCUhpRSlGgVTakBaBZHQJiMH+irT6V1fZQoaAZoCWgPQwjTEcDNYn9tQJSGlFKUaBVNzwFoFkdAmI3iJfpljHV9lChoBmgJaA9DCL7ArFCk0G1AlIaUUpRoFU07AWgWR0CYji3DNyHVdX2UKGgGaAloD0MIdZMYBBZFcECUhpRSlGgVTVABaBZHQJiPOoLofSx1fZQoaAZoCWgPQwgNqDejJihwQJSGlFKUaBVNewFoFkdAmI/n8Kohp3V9lChoBmgJaA9DCDlHHR2XqHJAlIaUUpRoFU1fAWgWR0CYkUjAzpHJdX2UKGgGaAloD0MIBAEydCxPc0CUhpRSlGgVTW0BaBZHQJiRVNHpbEB1fZQoaAZoCWgPQwh00ZDxaAJxQJSGlFKUaBVNDwJoFkdAmJMLFn7HhnV9lChoBmgJaA9DCOoHdZGCnHBAlIaUUpRoFU0mAWgWR0CYk7GOMl1KdX2UKGgGaAloD0MIjSlY42xPcUCUhpRSlGgVTY4BaBZHQJiTvlo11nx1fZQoaAZoCWgPQwjKoxthkWJxQJSGlFKUaBVNYAJoFkdAmJT0U0vXb3V9lChoBmgJaA9DCHcRpiiX8m1AlIaUUpRoFU0eAWgWR0CYlWFlCkXUdX2UKGgGaAloD0MInpYfuAoxcUCUhpRSlGgVTX8BaBZHQJiV+fnOjZd1fZQoaAZoCWgPQwjbUZyjTpdwQJSGlFKUaBVNEgFoFkdAmJZ6rNnoPnV9lChoBmgJaA9DCODYs+fylHBAlIaUUpRoFU1XAWgWR0CYlvHv+fh/dX2UKGgGaAloD0MIiuWWVoMxckCUhpRSlGgVTTABaBZHQJiXfho/Rmd1fZQoaAZoCWgPQwhz9s5oqyVwQJSGlFKUaBVNUgFoFkdAmJocA7xNI3V9lChoBmgJaA9DCM6pZAComm9AlIaUUpRoFU2CAWgWR0CYmlAAyVOcdX2UKGgGaAloD0MI2GX4TzeXbkCUhpRSlGgVTQ4BaBZHQJia1//echF1fZQoaAZoCWgPQwhAho4dVI1vQJSGlFKUaBVNeAFoFkdAmJvD0lJHy3V9lChoBmgJaA9DCO6UDtb/DW9AlIaUUpRoFU0vAWgWR0CYnBsVLzwudX2UKGgGaAloD0MIYjHqWnsla0CUhpRSlGgVTWgBaBZHQJicKLhrFfl1fZQoaAZoCWgPQwgtmPijqB9yQJSGlFKUaBVNZwFoFkdAmJyvXCj1w3V9lChoBmgJaA9DCGzp0VRPGjdAlIaUUpRoFUvjaBZHQJicwH3UQTV1fZQoaAZoCWgPQwjwUX+9wjlwQJSGlFKUaBVNXQFoFkdAmJ/JW7voeXV9lChoBmgJaA9DCH8xW7Kq4nBAlIaUUpRoFU0eAWgWR0CYn8nZkCmudX2UKGgGaAloD0MI7niT36Jbb0CUhpRSlGgVTYIBaBZHQJigqIyj59F1fZQoaAZoCWgPQwhGzVfJR8tyQJSGlFKUaBVNFgFoFkdAmKC7T+ee4HV9lChoBmgJaA9DCOsaLQd6H25AlIaUUpRoFU2DAWgWR0CYoV1+RYA9dX2UKGgGaAloD0MI36eq0EBob0CUhpRSlGgVTVoBaBZHQJihff642CN1fZQoaAZoCWgPQwi+afrsgPJsQJSGlFKUaBVNGgFoFkdAmKGNMXaakXV9lChoBmgJaA9DCB1xyAbSg29AlIaUUpRoFU1JAWgWR0CYofzWwu/UdX2UKGgGaAloD0MIg9vawvPMSECUhpRSlGgVS9poFkdAmKO/VEuxr3V9lChoBmgJaA9DCPhsHRxsUW9AlIaUUpRoFU0iAWgWR0CYpJFsHjZMdX2UKGgGaAloD0MId7rzxDNGcUCUhpRSlGgVTS4BaBZHQJiljsgMc6x1fZQoaAZoCWgPQwhCz2bVZ3xtQJSGlFKUaBVNSAFoFkdAmKXEzbeuWHV9lChoBmgJaA9DCFDIztvYwnFAlIaUUpRoFU0sAWgWR0CYpkymhufmdX2UKGgGaAloD0MIL058tSPwb0CUhpRSlGgVTSsBaBZHQJinJ+Vkc0d1fZQoaAZoCWgPQwiZYg6CTmhxQJSGlFKUaBVNNAFoFkdAmKeHfZVXFXV9lChoBmgJaA9DCFOXjGNkuHBAlIaUUpRoFU05AWgWR0CYq+xWT5fudX2UKGgGaAloD0MIw5s1eF+RRUCUhpRSlGgVS/5oFkdAmK1wN0/4ZnV9lChoBmgJaA9DCKoNTkR/t3FAlIaUUpRoFU1XAWgWR0CYrXuOjqOcdX2UKGgGaAloD0MIqBlSRTFlcECUhpRSlGgVTTQBaBZHQJitiUB4lhR1fZQoaAZoCWgPQwjaAkLr4dFuQJSGlFKUaBVNSgFoFkdAmK3ZDzAerHV9lChoBmgJaA9DCJo/prVpvnBAlIaUUpRoFU19AWgWR0CYrhjPOY6XdX2UKGgGaAloD0MIRBX+DG9W8b+UhpRSlGgVS+doFkdAmK5zwc5sCXV9lChoBmgJaA9DCARxHk5gnnBAlIaUUpRoFU1pAWgWR0CYrsfCAMDwdX2UKGgGaAloD0MIcLa5Mf3/cECUhpRSlGgVTQQCaBZHQJivB64UeuF1fZQoaAZoCWgPQwje5/ho8dpvQJSGlFKUaBVNZgFoFkdAmMUEkSmIkHV9lChoBmgJaA9DCHfbhea6i3FAlIaUUpRoFU0bAWgWR0CYxQnNPgvUdX2UKGgGaAloD0MIUDkmi/v/b0CUhpRSlGgVTUgBaBZHQJjFr2M85jp1fZQoaAZoCWgPQwjnVDIAVPdNQJSGlFKUaBVLz2gWR0CYxq3s5XEJdX2UKGgGaAloD0MIHyv4bQjJcUCUhpRSlGgVTX4BaBZHQJjG44lyBCl1fZQoaAZoCWgPQwiQ2y+frOBGQJSGlFKUaBVL1mgWR0CYx/Gxlg+hdX2UKGgGaAloD0MIEhH+RdA9bUCUhpRSlGgVTZ0BaBZHQJjJ5mEoOQR1fZQoaAZoCWgPQwgYeO49nGZxQJSGlFKUaBVNJgFoFkdAmMtEILPUrnV9lChoBmgJaA9DCEWfjzJiQ25AlIaUUpRoFU0eAWgWR0CYy5v9LpRodX2UKGgGaAloD0MI1nPS+8YncECUhpRSlGgVTS0BaBZHQJjLzvrnkkt1fZQoaAZoCWgPQwg8oGzKFR5zQJSGlFKUaBVNPgFoFkdAmMvg7kn1F3V9lChoBmgJaA9DCKG+ZU5XbXBAlIaUUpRoFU1uAWgWR0CYzcAfdRBNdX2UKGgGaAloD0MIvsCsUGRVcUCUhpRSlGgVTXYBaBZHQJjP1He7+UB1fZQoaAZoCWgPQwh9W7BU17BxQJSGlFKUaBVNfwFoFkdAmM/kWhysCHV9lChoBmgJaA9DCISaIVUULm5AlIaUUpRoFU0xAWgWR0CY0GV81Gb1dX2UKGgGaAloD0MI3zZTIR4ickCUhpRSlGgVTSkBaBZHQJjTxnXd0q91fZQoaAZoCWgPQwj2RNeFn7luQJSGlFKUaBVNfQFoFkdAmNR99+gDinV9lChoBmgJaA9DCOXwSScSgnBAlIaUUpRoFU2RAWgWR0CY1Ixx1gYxdX2UKGgGaAloD0MIsTOFzustbUCUhpRSlGgVTTUBaBZHQJjWolZ5iVl1fZQoaAZoCWgPQwhYHqSnSJpwQJSGlFKUaBVNmQFoFkdAmNc9NnGsFXV9lChoBmgJaA9DCJPDJ53IgHFAlIaUUpRoFU0yAWgWR0CY2JfF72L6dX2UKGgGaAloD0MILA38qMYNckCUhpRSlGgVTUMBaBZHQJjYqASWZ7Z1fZQoaAZoCWgPQwgwKqkTECRyQJSGlFKUaBVNOgFoFkdAmNioFNcnmnV9lChoBmgJaA9DCG0f8parlmNAlIaUUpRoFU3oA2gWR0CY2QBqKxcFdX2UKGgGaAloD0MIZof4hy3WbkCUhpRSlGgVTR0BaBZHQJjZpAZ88cN1fZQoaAZoCWgPQwgNwtzuZVJtQJSGlFKUaBVNZwFoFkdAmNp4ffXPJXV9lChoBmgJaA9DCAxAo3TpmGZAlIaUUpRoFU3oA2gWR0CY2oois4kvdX2UKGgGaAloD0MI39xfPS7ocECUhpRSlGgVTRwBaBZHQJjbtH8TBZZ1fZQoaAZoCWgPQwhS0sPQ6qdvQJSGlFKUaBVNOgFoFkdAmNw5ztCzC3V9lChoBmgJaA9DCNZTq6+urW5AlIaUUpRoFU1SAWgWR0CY3RBshxHYdX2UKGgGaAloD0MIat/cX30OcUCUhpRSlGgVTTgBaBZHQJjfg40dilV1fZQoaAZoCWgPQwiZm29E95wmwJSGlFKUaBVL5GgWR0CY4MX/o7mudX2UKGgGaAloD0MIWKg1zXtFckCUhpRSlGgVTVMBaBZHQJjhS3b212J1fZQoaAZoCWgPQwjlK4GUmKpyQJSGlFKUaBVNWAFoFkdAmOGIIF/x2HV9lChoBmgJaA9DCN5UpMIY0XJAlIaUUpRoFU0gAWgWR0CY4dVy3kPudX2UKGgGaAloD0MIvFzEd2IwckCUhpRSlGgVTUYBaBZHQJjithXr+o91fZQoaAZoCWgPQwhrmQzHMzRxQJSGlFKUaBVNFgFoFkdAmOK3KKYRd3V9lChoBmgJaA9DCBqLprOTIHBAlIaUUpRoFU0XAWgWR0CY4s0dilSCdX2UKGgGaAloD0MI8Z4Dy1GKckCUhpRSlGgVS/RoFkdAmONQC8vmHXV9lChoBmgJaA9DCMjO29jstW9AlIaUUpRoFU0gAWgWR0CY4+mDDjzadX2UKGgGaAloD0MIzXSvk3qYcECUhpRSlGgVTU8BaBZHQJjk+drftQd1fZQoaAZoCWgPQwjFy9O54v5yQJSGlFKUaBVNEAFoFkdAmOcB3aBZp3V9lChoBmgJaA9DCKs/wjDg529AlIaUUpRoFU1IAWgWR0CY55M3ZPEbdX2UKGgGaAloD0MIGVjH8YO7cECUhpRSlGgVTXsBaBZHQJjoBwVCXyB1fZQoaAZoCWgPQwhuwVJdwApvQJSGlFKUaBVNSAFoFkdAmOgtBnjABXV9lChoBmgJaA9DCP6cgvxsMW5AlIaUUpRoFU0aAWgWR0CY6dWY4Qz2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:224e648b530a75ed269c68d412972ae905a56e127eafa3bba31a183521dadfed
3
+ size 147412
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f855d783700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f855d783790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f855d783820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f855d7838b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f855d783940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f855d7839d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f855d783a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f855d783af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f855d783b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f855d783c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f855d783ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f855d783d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f855d7814e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673549118810185017,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACY7uT0p+Bu6WSU6ONW/5zKZxVA4CEVZtwAAgD8AAAAAGsmcPQTKsT+uFMU+HYKPvr1CrLxSvxI+AAAAAAAAAAB291m+Kp9ZPymmqj1pFLy+HRT9vcxqjj0AAAAAAAAAAM34Vbz5JSY/w0D6O4Awcb7FmTM6cid8ugAAAAAAAAAAM3yTPFdaQzwx2sU9s8/9vS0j4TwKFMu8AAAAAAAAAACa2k09boyePfW2UT2LIWi+pxuWPdaUtT0AAAAAAAAAAE2mCT3Xv3m7D/0pvpp1Mb6C9868iZgBPwAAgD8AAAAAhgIXPv74jD8V1RA+6QW4vle+0T2Kdw09AAAAAAAAAAAIT4u+i32PPyG2s70R8c6+pc9hvikbFT4AAAAAAAAAALNZkD2rIJA9LFSfvYQFa77ky9I8QhukPQAAAAAAAAAAwDHDvT0kLbuCyka5F4GPPA10mDzo5Ha9AAAAAAAAgD/NG8Q8hZ+iu71AC7z8nns8lJDavFa+Vz0AAIA/AACAP2ZgzLzEo1U+UxZsPFsYf74n4hc806HRvAAAAAAAAAAAAFqmPHFqYLspdDE8Bl2PPKMYkDxdH3a9AACAPwAAgD/aCIE9WUjwPkMkT72Ejnq+xvFoPAL1KT0AAAAAAAAAABrWFb2P0na66cmJu82VjDwBdBy7wDR1vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJsed0sGdckCUhpRSlIwBbJRNbgGMAXSUR0CYc3PJq7AddX2UKGgGaAloD0MIo1wav3A8bUCUhpRSlGgVTScCaBZHQJh0dSR8twt1fZQoaAZoCWgPQwirmEo/4XhTQJSGlFKUaBVL0WgWR0CYdmpiZv1ldX2UKGgGaAloD0MIAU7v4v0Lb0CUhpRSlGgVTW0BaBZHQJh25GMGX5Z1fZQoaAZoCWgPQwhFEVK38xRxQJSGlFKUaBVNTQFoFkdAmIwEDMeOn3V9lChoBmgJaA9DCFuYhXbOuHFAlIaUUpRoFU1vAWgWR0CYjBOearmydX2UKGgGaAloD0MIOxkcJS91cUCUhpRSlGgVTakBaBZHQJiMH+irT6V1fZQoaAZoCWgPQwjTEcDNYn9tQJSGlFKUaBVNzwFoFkdAmI3iJfpljHV9lChoBmgJaA9DCL7ArFCk0G1AlIaUUpRoFU07AWgWR0CYji3DNyHVdX2UKGgGaAloD0MIdZMYBBZFcECUhpRSlGgVTVABaBZHQJiPOoLofSx1fZQoaAZoCWgPQwgNqDejJihwQJSGlFKUaBVNewFoFkdAmI/n8Kohp3V9lChoBmgJaA9DCDlHHR2XqHJAlIaUUpRoFU1fAWgWR0CYkUjAzpHJdX2UKGgGaAloD0MIBAEydCxPc0CUhpRSlGgVTW0BaBZHQJiRVNHpbEB1fZQoaAZoCWgPQwh00ZDxaAJxQJSGlFKUaBVNDwJoFkdAmJMLFn7HhnV9lChoBmgJaA9DCOoHdZGCnHBAlIaUUpRoFU0mAWgWR0CYk7GOMl1KdX2UKGgGaAloD0MIjSlY42xPcUCUhpRSlGgVTY4BaBZHQJiTvlo11nx1fZQoaAZoCWgPQwjKoxthkWJxQJSGlFKUaBVNYAJoFkdAmJT0U0vXb3V9lChoBmgJaA9DCHcRpiiX8m1AlIaUUpRoFU0eAWgWR0CYlWFlCkXUdX2UKGgGaAloD0MInpYfuAoxcUCUhpRSlGgVTX8BaBZHQJiV+fnOjZd1fZQoaAZoCWgPQwjbUZyjTpdwQJSGlFKUaBVNEgFoFkdAmJZ6rNnoPnV9lChoBmgJaA9DCODYs+fylHBAlIaUUpRoFU1XAWgWR0CYlvHv+fh/dX2UKGgGaAloD0MIiuWWVoMxckCUhpRSlGgVTTABaBZHQJiXfho/Rmd1fZQoaAZoCWgPQwhz9s5oqyVwQJSGlFKUaBVNUgFoFkdAmJocA7xNI3V9lChoBmgJaA9DCM6pZAComm9AlIaUUpRoFU2CAWgWR0CYmlAAyVOcdX2UKGgGaAloD0MI2GX4TzeXbkCUhpRSlGgVTQ4BaBZHQJia1//echF1fZQoaAZoCWgPQwhAho4dVI1vQJSGlFKUaBVNeAFoFkdAmJvD0lJHy3V9lChoBmgJaA9DCO6UDtb/DW9AlIaUUpRoFU0vAWgWR0CYnBsVLzwudX2UKGgGaAloD0MIYjHqWnsla0CUhpRSlGgVTWgBaBZHQJicKLhrFfl1fZQoaAZoCWgPQwgtmPijqB9yQJSGlFKUaBVNZwFoFkdAmJyvXCj1w3V9lChoBmgJaA9DCGzp0VRPGjdAlIaUUpRoFUvjaBZHQJicwH3UQTV1fZQoaAZoCWgPQwjwUX+9wjlwQJSGlFKUaBVNXQFoFkdAmJ/JW7voeXV9lChoBmgJaA9DCH8xW7Kq4nBAlIaUUpRoFU0eAWgWR0CYn8nZkCmudX2UKGgGaAloD0MI7niT36Jbb0CUhpRSlGgVTYIBaBZHQJigqIyj59F1fZQoaAZoCWgPQwhGzVfJR8tyQJSGlFKUaBVNFgFoFkdAmKC7T+ee4HV9lChoBmgJaA9DCOsaLQd6H25AlIaUUpRoFU2DAWgWR0CYoV1+RYA9dX2UKGgGaAloD0MI36eq0EBob0CUhpRSlGgVTVoBaBZHQJihff642CN1fZQoaAZoCWgPQwi+afrsgPJsQJSGlFKUaBVNGgFoFkdAmKGNMXaakXV9lChoBmgJaA9DCB1xyAbSg29AlIaUUpRoFU1JAWgWR0CYofzWwu/UdX2UKGgGaAloD0MIg9vawvPMSECUhpRSlGgVS9poFkdAmKO/VEuxr3V9lChoBmgJaA9DCPhsHRxsUW9AlIaUUpRoFU0iAWgWR0CYpJFsHjZMdX2UKGgGaAloD0MId7rzxDNGcUCUhpRSlGgVTS4BaBZHQJiljsgMc6x1fZQoaAZoCWgPQwhCz2bVZ3xtQJSGlFKUaBVNSAFoFkdAmKXEzbeuWHV9lChoBmgJaA9DCFDIztvYwnFAlIaUUpRoFU0sAWgWR0CYpkymhufmdX2UKGgGaAloD0MIL058tSPwb0CUhpRSlGgVTSsBaBZHQJinJ+Vkc0d1fZQoaAZoCWgPQwiZYg6CTmhxQJSGlFKUaBVNNAFoFkdAmKeHfZVXFXV9lChoBmgJaA9DCFOXjGNkuHBAlIaUUpRoFU05AWgWR0CYq+xWT5fudX2UKGgGaAloD0MIw5s1eF+RRUCUhpRSlGgVS/5oFkdAmK1wN0/4ZnV9lChoBmgJaA9DCKoNTkR/t3FAlIaUUpRoFU1XAWgWR0CYrXuOjqOcdX2UKGgGaAloD0MIqBlSRTFlcECUhpRSlGgVTTQBaBZHQJitiUB4lhR1fZQoaAZoCWgPQwjaAkLr4dFuQJSGlFKUaBVNSgFoFkdAmK3ZDzAerHV9lChoBmgJaA9DCJo/prVpvnBAlIaUUpRoFU19AWgWR0CYrhjPOY6XdX2UKGgGaAloD0MIRBX+DG9W8b+UhpRSlGgVS+doFkdAmK5zwc5sCXV9lChoBmgJaA9DCARxHk5gnnBAlIaUUpRoFU1pAWgWR0CYrsfCAMDwdX2UKGgGaAloD0MIcLa5Mf3/cECUhpRSlGgVTQQCaBZHQJivB64UeuF1fZQoaAZoCWgPQwje5/ho8dpvQJSGlFKUaBVNZgFoFkdAmMUEkSmIkHV9lChoBmgJaA9DCHfbhea6i3FAlIaUUpRoFU0bAWgWR0CYxQnNPgvUdX2UKGgGaAloD0MIUDkmi/v/b0CUhpRSlGgVTUgBaBZHQJjFr2M85jp1fZQoaAZoCWgPQwjnVDIAVPdNQJSGlFKUaBVLz2gWR0CYxq3s5XEJdX2UKGgGaAloD0MIHyv4bQjJcUCUhpRSlGgVTX4BaBZHQJjG44lyBCl1fZQoaAZoCWgPQwiQ2y+frOBGQJSGlFKUaBVL1mgWR0CYx/Gxlg+hdX2UKGgGaAloD0MIEhH+RdA9bUCUhpRSlGgVTZ0BaBZHQJjJ5mEoOQR1fZQoaAZoCWgPQwgYeO49nGZxQJSGlFKUaBVNJgFoFkdAmMtEILPUrnV9lChoBmgJaA9DCEWfjzJiQ25AlIaUUpRoFU0eAWgWR0CYy5v9LpRodX2UKGgGaAloD0MI1nPS+8YncECUhpRSlGgVTS0BaBZHQJjLzvrnkkt1fZQoaAZoCWgPQwg8oGzKFR5zQJSGlFKUaBVNPgFoFkdAmMvg7kn1F3V9lChoBmgJaA9DCKG+ZU5XbXBAlIaUUpRoFU1uAWgWR0CYzcAfdRBNdX2UKGgGaAloD0MIvsCsUGRVcUCUhpRSlGgVTXYBaBZHQJjP1He7+UB1fZQoaAZoCWgPQwh9W7BU17BxQJSGlFKUaBVNfwFoFkdAmM/kWhysCHV9lChoBmgJaA9DCISaIVUULm5AlIaUUpRoFU0xAWgWR0CY0GV81Gb1dX2UKGgGaAloD0MI3zZTIR4ickCUhpRSlGgVTSkBaBZHQJjTxnXd0q91fZQoaAZoCWgPQwj2RNeFn7luQJSGlFKUaBVNfQFoFkdAmNR99+gDinV9lChoBmgJaA9DCOXwSScSgnBAlIaUUpRoFU2RAWgWR0CY1Ixx1gYxdX2UKGgGaAloD0MIsTOFzustbUCUhpRSlGgVTTUBaBZHQJjWolZ5iVl1fZQoaAZoCWgPQwhYHqSnSJpwQJSGlFKUaBVNmQFoFkdAmNc9NnGsFXV9lChoBmgJaA9DCJPDJ53IgHFAlIaUUpRoFU0yAWgWR0CY2JfF72L6dX2UKGgGaAloD0MILA38qMYNckCUhpRSlGgVTUMBaBZHQJjYqASWZ7Z1fZQoaAZoCWgPQwgwKqkTECRyQJSGlFKUaBVNOgFoFkdAmNioFNcnmnV9lChoBmgJaA9DCG0f8parlmNAlIaUUpRoFU3oA2gWR0CY2QBqKxcFdX2UKGgGaAloD0MIZof4hy3WbkCUhpRSlGgVTR0BaBZHQJjZpAZ88cN1fZQoaAZoCWgPQwgNwtzuZVJtQJSGlFKUaBVNZwFoFkdAmNp4ffXPJXV9lChoBmgJaA9DCAxAo3TpmGZAlIaUUpRoFU3oA2gWR0CY2oois4kvdX2UKGgGaAloD0MI39xfPS7ocECUhpRSlGgVTRwBaBZHQJjbtH8TBZZ1fZQoaAZoCWgPQwhS0sPQ6qdvQJSGlFKUaBVNOgFoFkdAmNw5ztCzC3V9lChoBmgJaA9DCNZTq6+urW5AlIaUUpRoFU1SAWgWR0CY3RBshxHYdX2UKGgGaAloD0MIat/cX30OcUCUhpRSlGgVTTgBaBZHQJjfg40dilV1fZQoaAZoCWgPQwiZm29E95wmwJSGlFKUaBVL5GgWR0CY4MX/o7mudX2UKGgGaAloD0MIWKg1zXtFckCUhpRSlGgVTVMBaBZHQJjhS3b212J1fZQoaAZoCWgPQwjlK4GUmKpyQJSGlFKUaBVNWAFoFkdAmOGIIF/x2HV9lChoBmgJaA9DCN5UpMIY0XJAlIaUUpRoFU0gAWgWR0CY4dVy3kPudX2UKGgGaAloD0MIvFzEd2IwckCUhpRSlGgVTUYBaBZHQJjithXr+o91fZQoaAZoCWgPQwhrmQzHMzRxQJSGlFKUaBVNFgFoFkdAmOK3KKYRd3V9lChoBmgJaA9DCBqLprOTIHBAlIaUUpRoFU0XAWgWR0CY4s0dilSCdX2UKGgGaAloD0MI8Z4Dy1GKckCUhpRSlGgVS/RoFkdAmONQC8vmHXV9lChoBmgJaA9DCMjO29jstW9AlIaUUpRoFU0gAWgWR0CY4+mDDjzadX2UKGgGaAloD0MIzXSvk3qYcECUhpRSlGgVTU8BaBZHQJjk+drftQd1fZQoaAZoCWgPQwjFy9O54v5yQJSGlFKUaBVNEAFoFkdAmOcB3aBZp3V9lChoBmgJaA9DCKs/wjDg529AlIaUUpRoFU1IAWgWR0CY55M3ZPEbdX2UKGgGaAloD0MIGVjH8YO7cECUhpRSlGgVTXsBaBZHQJjoBwVCXyB1fZQoaAZoCWgPQwhuwVJdwApvQJSGlFKUaBVNSAFoFkdAmOgtBnjABXV9lChoBmgJaA9DCP6cgvxsMW5AlIaUUpRoFU0aAWgWR0CY6dWY4Qz2dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:986d770ecf5af1a34648dc273438566be7a918911473688a2119cf86ae7689a5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ce56538246ac6307e34cae3ce8ec4249b55db7081301a76edf7e1f62c04ce9
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (249 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.4148417198546, "std_reward": 24.111011198687986, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T19:13:15.767082"}