Japanese
llama
causal-lm
File size: 1,462 Bytes
7bcb521
 
f56b06e
 
 
 
 
 
 
7bcb521
f56b06e
 
 
 
 
 
ebe782d
f56b06e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebe782d
f56b06e
ebe782d
f56b06e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: cc-by-sa-4.0
datasets:
- izumi-lab/llm-japanese-dataset
language:
- ja
tags:
- llama
- causal-lm
---

This repo contains a low-rank adapter for LLaMA-7b
fit on the [llm-japanese-dataset](https://github.com/masanorihirano/llm-japanese-dataset) dataset.

This version of the weights was trained with the following hyperparameters:

- Epochs: 5
- Batch size: 128
- Cutoff length: 256
- Learning rate: 3e-4
- Lora _r_: 4
- Lora target modules: q_proj, v_proj

```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from peft import PeftModel

base_model = "decapoda-research/llama-7b-hf"
# Please note that the special license of decapoda-research/llama-7b-hf is applied.
model = LlamaForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
model = PeftModel.from_pretrained(
    model,
    "izumi-lab/llama-7b-japanese-lora-v0",
    torch_dtype=torch.float16,
)
```

To see more latest information, please go to [llm.msuzuki.me](https://llm.msuzuki.me).

## Details

- Japanese Paper: [https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/422](https://jxiv.jst.go.jp/index.php/jxiv/preprint/view/422)
- English Paper: 
- GitHub: [https://github.com/retarfi/jallm]
- Website: [llm.msuzuki.me](https://llm.msuzuki.me).

Citation:


If you have any inquiries, such as joint research, data provision, various types of support, please email to [email protected] .