Automatic Speech Recognition
Transformers
Safetensors
Hebrew
whisper
Inference Endpoints
yoad commited on
Commit
527b6cf
·
verified ·
1 Parent(s): 7590eab

Fill In Model card

Browse files
Files changed (1) hide show
  1. README.md +39 -160
README.md CHANGED
@@ -1,199 +1,78 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - ivrit-ai/crowd-transcribe-v5
6
+ - ivrit-ai/crowd-recital-whisper-training
7
+ language:
8
+ - he
9
+ metrics:
10
+ - wer
11
+ base_model:
12
+ - openai/whisper-large-v3
13
  ---
14
 
15
  # Model Card for Model ID
16
 
17
+ This model is a Hebrew finetune (continued training) of the OpenAI Whisper Large v3 model.
 
18
 
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
 
24
+ - **Developed by:** ivrit-ai
25
+ - **Language(s) (NLP):** Hebrew
26
+ - **License:** Apache-2.0
27
+ - **Finetuned from model** openai/whisper-large-v3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ## Bias, Risks, and Limitations
30
 
31
+ Language detection capability of this model has been degraded during training - it is intended for mostly-hebrew audio transcription.
32
+ Language token should be explicitly set to Hebrew.
 
33
 
34
+ Additionally, the tanslation task was not trained and also degraded. This model would not be able to translate in any reasonable capacity.
 
 
 
 
35
 
36
  ## How to Get Started with the Model
37
 
38
+ Please follow the original [model card](https://huggingface.co/openai/whisper-large-v3#usage) for usage details - replacing with this model name.
39
+ You can also fine other weight formats ad quantizations on the [ivrit ai](https://huggingface.co/ivrit-ai) HF page.
 
40
 
41
  ## Training Details
42
 
43
  ### Training Data
44
 
45
+ This model was trained on the following datasets:
46
 
47
+ - [ivrit-ai/crowd-transcribe-v5](https://huggingface.co/datasets/ivrit-ai/crowd-transcribe-v5) - Publicly accessible audio sources have beem crowd-transcribed segment-by-segment - ~300h
48
+ - [ivrit-ai/crowd-recital-whisper-training](https://huggingface.co/datasets/ivrit-ai/crowd-recital-whisper-training) - Crowd-sourced recording of Wikipedia atricle snippets. ~50h
49
 
50
  ### Training Procedure
51
 
52
+ This model is an average of the lowest eval lass from two seprate runs with the same setup.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ #### Preprocessing
55
 
56
+ The "Crowd Recital" dataset contains timestamps and previous text following the Whisper expected inputs.
57
+ Timestamps were used across all 50h from this datasets, and 50% of the previous text was used.
58
 
59
+ The "Crowd Transcribe" datasets has no timestamps or previous text and this preprocessing only included melspec feature extraction and text encoding.
60
 
61
+ Preprocessing code can be found within the training code [repository](https://github.com/ivrit-ai/asr-training).
62
 
63
+ Datasets were interleaved with 0.95:0.05 ratio (crowd-transcribe:crowd-recital).
64
 
65
+ #### Training Hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
+ - **Training regime:** bf16 mixed precision with sdpa
68
+ - **Learning Rate:** 1e-5, Linear decay, 800 steps warmup for 3 epochs
69
+ - **Batch Size:** 32
70
 
71
+ #### Training Hardward / Duration
72
 
73
+ - **GPU Type:** Single Nvidia L40S machine
74
+ - **Duration:** 24h run, stopped at 2 epochs
75
 
76
+ ## Evaluation
77
 
78
+ Please refer to the [ivrit-ai/hebrew-transcription-leaderboard](https://huggingface.co/spaces/ivrit-ai/hebrew-transcription-leaderboard)