--- library_name: transformers tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-ner-finer results: [] datasets: - nlpaueb/finer-139 language: - en metrics: - accuracy - precision - f1 - confusion_matrix base_model: - distilbert/distilbert-base-uncased --- # distilbert-base-uncased-ner-finer ## Model description This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [Finer-139](https://huggingface.co/datasets/nlpaueb/finer-139) dataset. It achieves the following results on the evaluation set: - Loss: 0.0293 - Precision: 0.8768 - Recall: 0.9064 - F1: 0.8914 - Accuracy: 0.9901 ## Training and evaluation data The training data consists of the top 4 ner_tags having the most occurence from the Finer-139 dataset plus the outside tag "O". ## Training results | Epoch | Training Loss | Validation Loss | Precision | Recall | F1 | Accuracy | |---|---|---|---|---|---|---| | 1 | 0.035700 | 0.035880 | 0.847873 | 0.890125 | 0.868486 | 0.987242 | | 2 | 0.023700 | 0.029618 | 0.867055 | 0.906431 | 0.886306 | 0.989505 | | 3 | 0.017000 | 0.029322 | 0.876898 | 0.906431 | 0.891420 | 0.990180 | ## Valiadtion results | ner_tag | precision | recall | f1-score | support | |--------------|-----------|--------|----------|---------| | O | 1.00 | 0.99 | 1.00 | 229573 | | I-DebtInstrumentInterestRateStatedPercentage | 0.94 | 0.94 | 0.94 | 5412 | | I-LineOfCreditFacilityMaximumBorrowingCapacity | 0.82 | 0.88 | 0.85 | 4288 | | I-DebtInstrumentBasisSpreadOnVariableRate1 | 0.89 | 0.97 | 0.93 | 4788 | | I-DebtInstrumentFaceAmount | 0.79 | 0.76 | 0.78 | 3398 | ![confusion matrix](https://cdn-uploads.huggingface.co/production/uploads/6791ddd9f0ecdeb1a8aa6883/3CftA28uzQAU6Oqi_Iddl.png) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0