Upload 5 files
Browse files- satlas/__pycache__/model.cpython-310.pyc +0 -0
- satlas/__pycache__/utils.cpython-310.pyc +0 -0
- satlas/run.py +22 -0
- satlas/utils.py +76 -0
- satlas/weights/esrgan_1S2.pth +3 -0
satlas/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (10.1 kB). View file
|
|
|
satlas/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (1.75 kB). View file
|
|
|
satlas/run.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import opensr_test
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from utils import load_satlas_sr, run_satlas
|
| 5 |
+
|
| 6 |
+
# Load the model
|
| 7 |
+
model = load_satlas_sr(device="cuda")
|
| 8 |
+
|
| 9 |
+
# Load the dataset
|
| 10 |
+
dataset = opensr_test.load("naip")
|
| 11 |
+
lr_dataset, hr_dataset = dataset["L1C"], dataset["HRharm"]
|
| 12 |
+
|
| 13 |
+
# Predict a image
|
| 14 |
+
index = 20
|
| 15 |
+
lr = torch.from_numpy(lr_dataset[index][[3, 2, 1]]/3558).float().to("cuda").clamp(0, 1)
|
| 16 |
+
sr = run_satlas(model=model, lr=lr, cropsize=32, overlap=0)
|
| 17 |
+
|
| 18 |
+
# Run the model
|
| 19 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
| 20 |
+
ax[0].imshow(lr.cpu().numpy().transpose(1, 2, 0))
|
| 21 |
+
ax[1].imshow(sr.cpu().numpy().transpose(1, 2, 0))
|
| 22 |
+
plt.show()
|
satlas/utils.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 3 |
+
from typing import Union
|
| 4 |
+
import itertools
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def load_satlas_sr(device: Union[str, torch.device] = "cuda") -> RRDBNet:
|
| 9 |
+
# Load the weights
|
| 10 |
+
weights_file = "weights/esrgan_1S2.pth"
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
# Create the model
|
| 14 |
+
model = RRDBNet(
|
| 15 |
+
num_in_ch=3,
|
| 16 |
+
num_out_ch=3,
|
| 17 |
+
num_feat=64,
|
| 18 |
+
num_block=23,
|
| 19 |
+
num_grow_ch=32,
|
| 20 |
+
scale=4
|
| 21 |
+
).to(device)
|
| 22 |
+
|
| 23 |
+
# Setup the weights
|
| 24 |
+
state_dict = torch.load(weights_file)
|
| 25 |
+
model.load_state_dict(state_dict['params_ema'])
|
| 26 |
+
model.eval()
|
| 27 |
+
|
| 28 |
+
# no gradients
|
| 29 |
+
for param in model.parameters():
|
| 30 |
+
param.requires_grad = False
|
| 31 |
+
|
| 32 |
+
return model
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def run_satlas(model, lr, cropsize: int = 32, overlap: int = 0):
|
| 36 |
+
# Select the raster with the lowest resolution
|
| 37 |
+
tshp = lr.shape
|
| 38 |
+
|
| 39 |
+
# if the image is too small, return (0, 0)
|
| 40 |
+
if (tshp[1] < cropsize) and (tshp[2] < cropsize):
|
| 41 |
+
return [(0, 0)]
|
| 42 |
+
|
| 43 |
+
# Define relative coordinates.
|
| 44 |
+
xmn, xmx, ymn, ymx = (0, tshp[1], 0, tshp[2])
|
| 45 |
+
|
| 46 |
+
if overlap > cropsize:
|
| 47 |
+
raise ValueError("The overlap must be smaller than the cropsize")
|
| 48 |
+
|
| 49 |
+
xrange = np.arange(xmn, xmx, (cropsize - overlap))
|
| 50 |
+
yrange = np.arange(ymn, ymx, (cropsize - overlap))
|
| 51 |
+
|
| 52 |
+
# If there is negative values in the range, change them by zero.
|
| 53 |
+
xrange[xrange < 0] = 0
|
| 54 |
+
yrange[yrange < 0] = 0
|
| 55 |
+
|
| 56 |
+
# Remove the last element if it is outside the tensor
|
| 57 |
+
xrange = xrange[xrange - (tshp[1] - cropsize) <= 0]
|
| 58 |
+
yrange = yrange[yrange - (tshp[2] - cropsize) <= 0]
|
| 59 |
+
|
| 60 |
+
# If the last element is not (tshp[1] - cropsize) add it!
|
| 61 |
+
if xrange[-1] != (tshp[1] - cropsize):
|
| 62 |
+
xrange = np.append(xrange, tshp[1] - cropsize)
|
| 63 |
+
if yrange[-1] != (tshp[2] - cropsize):
|
| 64 |
+
yrange = np.append(yrange, tshp[2] - cropsize)
|
| 65 |
+
|
| 66 |
+
# Create all the relative coordinates
|
| 67 |
+
mrs = list(itertools.product(xrange, yrange))
|
| 68 |
+
|
| 69 |
+
# Predict the image
|
| 70 |
+
sr = torch.zeros(3, tshp[1]*4, tshp[2]*4)
|
| 71 |
+
for x, y in mrs:
|
| 72 |
+
crop = lr[:, x:x+cropsize, y:y+cropsize]
|
| 73 |
+
sr_crop = model(crop[None])[0]
|
| 74 |
+
sr[:, x*4:(x+cropsize)*4, y*4:(y+cropsize)*4] = sr_crop
|
| 75 |
+
|
| 76 |
+
return sr
|
satlas/weights/esrgan_1S2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4478f38ccd2271467e77eb5a311aec99ff6796bf900ccfa88c85eea992537f2
|
| 3 |
+
size 134059342
|