import base64 import json import sys from collections import defaultdict from io import BytesIO from pprint import pprint from typing import Any, Dict, List import os import re from pathlib import Path from typing import Union from concurrent.futures import ThreadPoolExecutor import numpy as np from PIL import ImageFilter import torch from diffusers import ( DiffusionPipeline, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, utils, ) from safetensors.torch import load_file from torch import autocast, tensor import torchvision.transforms from PIL import Image REPO_DIR = Path(__file__).resolve().parent # if local avoid repo url # print(os.getcwd()) # set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device.type != "cuda": raise ValueError("need to run on GPU") class EndpointHandler: LORA_PATHS = { "hairdetailer": str(REPO_DIR / "lora/hairdetailer.safetensors"), "lora_leica": str(REPO_DIR / "lora/lora_leica.safetensors"), "epiNoiseoffset_v2": str(REPO_DIR / "lora/epiNoiseoffset_v2.safetensors"), "MBHU-TT2FRS": str(REPO_DIR / "lora/MBHU-TT2FRS.safetensors"), "ShinyOiledSkin_v20": str( REPO_DIR / "lora/ShinyOiledSkin_v20-LoRA.safetensors" ), "polyhedron_new_skin_v1.1": str( REPO_DIR / "lora/polyhedron_new_skin_v1.1.safetensors" ), "detailed_eye-10": str(REPO_DIR / "lora/detailed_eye-10.safetensors"), "add_detail": str(REPO_DIR / "lora/add_detail.safetensors"), "MuscleGirl_v1": str(REPO_DIR / "lora/MuscleGirl_v1.safetensors"), "flat2": str(REPO_DIR / "lora/flat2.safetensors"), } TEXTUAL_INVERSION = [ { "weight_name": str(REPO_DIR / "embeddings/EasyNegative.safetensors"), "token": "easynegative", }, { "weight_name": str(REPO_DIR / "embeddings/badhandv4.pt"), "token": "badhandv4", }, { "weight_name": str(REPO_DIR / "embeddings/bad-artist-anime.pt"), "token": "bad-artist-anime", }, { "weight_name": str(REPO_DIR / "embeddings/NegfeetV2.pt"), "token": "negfeetv2", }, { "weight_name": str(REPO_DIR / "embeddings/ng_deepnegative_v1_75t.pt"), "token": "ng_deepnegative_v1_75t", }, { "weight_name": str(REPO_DIR / "embeddings/bad-hands-5.pt"), "token": "bad-hands-5", }, ] def __init__(self, path="."): self.inference_progress = {} # Dictionary to store progress of each request self.inference_images = {} # Dictionary to store latest image of each request self.total_steps = {} self.active_request_ids = list() self.inference_in_progress = False self.executor = ThreadPoolExecutor( max_workers=1 ) # Vous pouvez ajuster max_workers en fonction de vos besoins # load the optimized model self.pipe = DiffusionPipeline.from_pretrained( path, custom_pipeline="lpw_stable_diffusion", # avoid 77 token limit torch_dtype=torch.float16, # accelerate render ) self.pipe = self.pipe.to(device) # https://stablediffusionapi.com/docs/a1111schedulers/ # DPM++ 2M SDE Karras # increase step to avoid high contrast num_inference_steps=30 # self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( # self.pipe.scheduler.config, # use_karras_sigmas=True, # algorithm_type="sde-dpmsolver++", # ) # DPM++ 2M Karras self.pipe.scheduler = DPMSolverMultistepScheduler.from_config( self.pipe.scheduler.config, use_karras_sigmas=True, ) # Mode boulardus self.pipe.safety_checker = None # Disable progress bar self.pipe.set_progress_bar_config(disable=True) # Load negative embeddings to avoid bad hands, etc self.load_embeddings() # boosts performance by another 20% self.pipe.enable_xformers_memory_efficient_attention() self.pipe.enable_attention_slicing() # may need a requirement in the root with xformer # Load loras one time only # Must be replaced once we will know how to hot load/unload # it use the own made load_lora function self.load_selected_loras( [ ["polyhedron_new_skin_v1.1", 0.2], ["detailed_eye-10", 0.2], ["add_detail", 0.3], ["MuscleGirl_v1", 0.2], ] ) def load_lora(self, pipeline, lora_path, lora_weight=0.5): state_dict = load_file(lora_path) LORA_PREFIX_UNET = "lora_unet" LORA_PREFIX_TEXT_ENCODER = "lora_te" alpha = lora_weight visited = [] for key in state_dict: state_dict[key] = state_dict[key].to(device) # directly update weight in diffusers model for key in state_dict: # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: layer_infos = ( key.split(".")[0] .split(LORA_PREFIX_TEXT_ENCODER + "_")[-1] .split("_") ) curr_layer = pipeline.text_encoder else: layer_infos = ( key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") ) curr_layer = pipeline.unet # find the target layer temp_name = layer_infos.pop(0) while len(layer_infos) > -1: try: curr_layer = curr_layer.__getattr__(temp_name) if len(layer_infos) > 0: temp_name = layer_infos.pop(0) elif len(layer_infos) == 0: break except Exception: if len(temp_name) > 0: temp_name += "_" + layer_infos.pop(0) else: temp_name = layer_infos.pop(0) # org_forward(x) + lora_up(lora_down(x)) * multiplier pair_keys = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down", "lora_up")) pair_keys.append(key) else: pair_keys.append(key) pair_keys.append(key.replace("lora_up", "lora_down")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: weight_up = ( state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) ) weight_down = ( state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) ) curr_layer.weight.data += alpha * torch.mm( weight_up, weight_down ).unsqueeze(2).unsqueeze(3) else: weight_up = state_dict[pair_keys[0]].to(torch.float32) weight_down = state_dict[pair_keys[1]].to(torch.float32) curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down) # update visited list for item in pair_keys: visited.append(item) return pipeline def load_embeddings(self): """Load textual inversions, avoid bad prompts""" for model in EndpointHandler.TEXTUAL_INVERSION: self.pipe.load_textual_inversion( ".", weight_name=model["weight_name"], token=model["token"] ) def load_selected_loras(self, selections): """Load Loras models, can lead to marvelous creations""" for model_name, weight in selections: lora_path = EndpointHandler.LORA_PATHS[model_name] # self.pipe.load_lora_weights(lora_path) self.load_lora(self.pipe, lora_path, weight) def clean_negative_prompt(self, negative_prompt): """Clean negative prompt to remove already used negative prompt handlers""" # negative_prompt = ( # negative_prompt # + """, easynegative, badhandv4, bad-artist-anime, negfeetv2, ng_deepnegative_v1_75t, bad-hands-5, """ # ) tokens = [item["token"] for item in self.TEXTUAL_INVERSION] # Retirer tous les tokens de negative_prompt s'ils existent déjà for token in tokens: # Utiliser une expression régulière pour un remplacement insensible à la casse negative_prompt = re.sub( r"\b" + re.escape(token) + r"\b", "", negative_prompt, flags=re.IGNORECASE, ).strip() # Ajouter tous les tokens à la fin de negative_prompt negative_prompt += " " + " ".join(tokens) return negative_prompt def clean_request_data(self): """Clean up the data related to a specific request ID.""" # Remove the request ID from the progress dictionary self.inference_progress.clear() # Remove the request ID from the images dictionary self.inference_images.clear() # Remove the request ID from the total_steps dictionary self.total_steps.clear() # Delete request id self.active_request_ids.clear() # Set inference to False self.inference_in_progress = False def progress_callback( self, step: int, timestep: int, latents: Any, request_id: str, status: str, ): try: if status == "progress": # Latents to numpy img_data = self.pipe.decode_latents(latents) img_data = (img_data.squeeze() * 255).astype(np.uint8) img = Image.fromarray(img_data, "RGB") # Apply a blur to the image # more intense at the beginning if step < int(self.total_steps[self.active_request_ids[0]] / 1.5): img = img.filter(ImageFilter.GaussianBlur(radius=30)) else: img = img.filter(ImageFilter.GaussianBlur(radius=10)) # print(img_data) else: # pil object # print(latents) img = latents buffered = BytesIO() img.save(buffered, format="PNG") # print(status) # Save the image to a file # img.save("squirel.png", format="PNG") # Encode the image into a base64 string representation img_str = base64.b64encode(buffered.getvalue()).decode() except Exception as e: print(f"Error: {e}") # Store progress and image progress_percentage = ( step / self.total_steps[request_id] ) * 100 # Assuming self.total_steps is the total number of steps for inference self.inference_progress[request_id] = progress_percentage self.inference_images[request_id] = img_str def check_progress(self, request_id: str) -> Dict[str, Union[str, float]]: progress = self.inference_progress.get(request_id, 0) latest_image = self.inference_images.get(request_id, None) # print(self.inference_progress) if progress >= 100: status = "complete" else: status = "in-progress" return { "flag": "success", "status": status, "progress": int(progress), "image": latest_image, } def start_inference(self, data: Dict) -> Dict: """Start a new inference.""" global device # Which Lora do we load ? # selected_models = [ # ("ShinyOiledSkin_v20", 0.3), # ("MBHU-TT2FRS", 0.5), # ("hairdetailer", 0.5), # ("lora_leica", 0.5), # ("epiNoiseoffset_v2", 0.5), # ] # 1. Verify input arguments required_fields = [ "prompt", "negative_prompt", "width", "num_inference_steps", "height", "guidance_scale", "request_id", ] missing_fields = [field for field in required_fields if field not in data] if missing_fields: return { "flag": "error", "message": f"Missing fields: {', '.join(missing_fields)}", } # Now extract the fields prompt = data["prompt"] negative_prompt = data["negative_prompt"] loras_model = data.get("loras_model", None) seed = data.get("seed", None) width = data["width"] num_inference_steps = data["num_inference_steps"] height = data["height"] guidance_scale = data["guidance_scale"] request_id = data["request_id"] # Used for progress checker self.total_steps[request_id] = num_inference_steps # USe this to add automatically some negative prompts forced_negative = self.clean_negative_prompt(negative_prompt) # Set the generator seed if provided generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None # Load the provided Lora models # self.pipe.unload_lora_weights() # Unload models to avoid lora staking # if loras_model: # self.load_selected_loras(loras_model) # set scale of loras, for now take only first scale of the loaded lora and apply to all until we find the way to apply specified scale # scale = {"scale": loras_model[0][1]} if loras_model else None try: # 2. Process with autocast(device.type): image = self.pipe.text2img( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, height=height, width=width, negative_prompt=forced_negative, generator=generator, max_embeddings_multiples=5, callback=lambda step, timestep, latents: self.progress_callback( step, timestep, latents, request_id, "progress" ), callback_steps=5, # cross_attention_kwargs={"scale": 0.2}, ).images[0] # print(image) self.progress_callback( num_inference_steps, 0, image, request_id, "complete" ) self.inference_in_progress = False # for debug # image.save("squirelb.png", format="PNG") except Exception as e: # Handle any other exceptions and return an error response return {"flag": "error", "message": str(e)} def __call__(self, data: Any) -> Dict: """Handle incoming requests.""" action = data.get("action", None) request_id = data.get("request_id") # Check if the request_id is valid for all actions if not request_id: return {"flag": "error", "message": "Missing request_id."} if action == "check_progress": if request_id not in self.active_request_ids: return { "flag": "error", "message": "Request id doesn't match any active request.", } return self.check_progress(request_id) elif action == "inference": # Check if an inference is already in progress if self.inference_in_progress: return { "flag": "error", "message": "Another inference is already in progress. Please wait.", } # Set the inference state to in progress self.clean_request_data() self.inference_in_progress = True self.inference_progress[request_id] = 0 self.inference_images[request_id] = None self.active_request_ids.append(request_id) self.executor.submit(self.start_inference, data) return { "flag": "success", "message": "Inference started", "request_id": request_id, } else: return {"flag": "error", "message": f"Unsupported action: {action}"}