--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer model-index: - name: segformer-b0_DsMetalDam_Augmented_Cropped results: [] --- # segformer-b0_DsMetalDam_Augmented_Cropped This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2486 - Mean Iou: 0.6867 - Mean Accuracy: 0.7623 - Overall Accuracy: 0.9106 - Accuracy Matrix: 0.8910 - Accuracy Austenite: 0.9442 - Accuracy Martensite/austenite: 0.8061 - Accuracy Precipitate: 0.2109 - Accuracy Defect: 0.9591 - Iou Matrix: 0.8022 - Iou Austenite: 0.8886 - Iou Martensite/austenite: 0.6946 - Iou Precipitate: 0.1697 - Iou Defect: 0.8786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Matrix | Accuracy Austenite | Accuracy Martensite/austenite | Accuracy Precipitate | Accuracy Defect | Iou Matrix | Iou Austenite | Iou Martensite/austenite | Iou Precipitate | Iou Defect | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------:|:------------------:|:-----------------------------:|:--------------------:|:---------------:|:----------:|:-------------:|:------------------------:|:---------------:|:----------:| | 0.2546 | 1.0 | 343 | 0.3220 | 0.5965 | 0.6868 | 0.8757 | 0.8517 | 0.9218 | 0.7201 | 0.0 | 0.9404 | 0.7384 | 0.8585 | 0.5502 | 0.0 | 0.8353 | | 0.336 | 2.0 | 686 | 0.3159 | 0.5992 | 0.6766 | 0.8807 | 0.8816 | 0.9295 | 0.6220 | 0.0 | 0.9497 | 0.7474 | 0.8627 | 0.5429 | 0.0 | 0.8428 | | 0.2976 | 3.0 | 1029 | 0.3087 | 0.6057 | 0.6971 | 0.8807 | 0.8383 | 0.9325 | 0.7561 | 0.0000 | 0.9583 | 0.7412 | 0.8629 | 0.5833 | 0.0000 | 0.8411 | | 0.2791 | 4.0 | 1372 | 0.2907 | 0.6175 | 0.6995 | 0.8886 | 0.8717 | 0.9290 | 0.7401 | 0.0016 | 0.9548 | 0.7608 | 0.8674 | 0.6070 | 0.0016 | 0.8507 | | 0.2795 | 5.0 | 1715 | 0.2883 | 0.6264 | 0.7025 | 0.8906 | 0.8675 | 0.9369 | 0.7303 | 0.0291 | 0.9489 | 0.7630 | 0.8689 | 0.6135 | 0.0283 | 0.8584 | | 0.2215 | 6.0 | 2058 | 0.2845 | 0.6316 | 0.7081 | 0.8924 | 0.8873 | 0.9252 | 0.7457 | 0.0452 | 0.9373 | 0.7700 | 0.8700 | 0.6212 | 0.0431 | 0.8536 | | 0.2372 | 7.0 | 2401 | 0.2770 | 0.6343 | 0.7197 | 0.8931 | 0.8565 | 0.9373 | 0.7906 | 0.0492 | 0.9651 | 0.7657 | 0.8715 | 0.6365 | 0.0472 | 0.8504 | | 0.3055 | 8.0 | 2744 | 0.2742 | 0.6337 | 0.7201 | 0.8950 | 0.8835 | 0.9220 | 0.8026 | 0.0324 | 0.9603 | 0.7742 | 0.8728 | 0.6413 | 0.0317 | 0.8482 | | 0.2047 | 9.0 | 3087 | 0.2680 | 0.6497 | 0.7251 | 0.8982 | 0.8733 | 0.9384 | 0.7786 | 0.0884 | 0.9468 | 0.7765 | 0.8766 | 0.6500 | 0.0819 | 0.8634 | | 0.1705 | 10.0 | 3430 | 0.2675 | 0.6489 | 0.7328 | 0.8987 | 0.8744 | 0.9336 | 0.8043 | 0.0862 | 0.9654 | 0.7793 | 0.8767 | 0.6531 | 0.0802 | 0.8550 | | 0.2029 | 11.0 | 3773 | 0.2685 | 0.6523 | 0.7267 | 0.9003 | 0.8751 | 0.9443 | 0.7596 | 0.0958 | 0.9589 | 0.7812 | 0.8779 | 0.6536 | 0.0890 | 0.8600 | | 0.1707 | 12.0 | 4116 | 0.2612 | 0.6591 | 0.7360 | 0.9015 | 0.8866 | 0.9324 | 0.7982 | 0.1097 | 0.9532 | 0.7853 | 0.8788 | 0.6639 | 0.0995 | 0.8679 | | 0.2742 | 13.0 | 4459 | 0.2628 | 0.6512 | 0.7247 | 0.9022 | 0.8756 | 0.9442 | 0.7781 | 0.0666 | 0.9593 | 0.7847 | 0.8797 | 0.6635 | 0.0633 | 0.8651 | | 0.2991 | 14.0 | 4802 | 0.2702 | 0.6653 | 0.7404 | 0.9025 | 0.8909 | 0.9368 | 0.7673 | 0.1492 | 0.9578 | 0.7870 | 0.8799 | 0.6627 | 0.1247 | 0.8722 | | 0.229 | 15.0 | 5145 | 0.2599 | 0.6615 | 0.7395 | 0.9026 | 0.8723 | 0.9463 | 0.7800 | 0.1303 | 0.9687 | 0.7850 | 0.8798 | 0.6682 | 0.1143 | 0.8604 | | 0.2004 | 16.0 | 5488 | 0.2595 | 0.6719 | 0.7473 | 0.9042 | 0.8854 | 0.9398 | 0.7863 | 0.1735 | 0.9513 | 0.7898 | 0.8814 | 0.6719 | 0.1442 | 0.8721 | | 0.1944 | 17.0 | 5831 | 0.2564 | 0.6729 | 0.7486 | 0.9058 | 0.8940 | 0.9368 | 0.7895 | 0.1693 | 0.9536 | 0.7936 | 0.8830 | 0.6778 | 0.1418 | 0.8685 | | 0.2068 | 18.0 | 6174 | 0.2539 | 0.6664 | 0.7450 | 0.9061 | 0.8915 | 0.9362 | 0.8051 | 0.1245 | 0.9677 | 0.7940 | 0.8839 | 0.6801 | 0.1102 | 0.8641 | | 0.2461 | 19.0 | 6517 | 0.2494 | 0.6776 | 0.7603 | 0.9063 | 0.8756 | 0.9427 | 0.8251 | 0.1941 | 0.9642 | 0.7927 | 0.8854 | 0.6800 | 0.1585 | 0.8712 | | 0.2252 | 20.0 | 6860 | 0.2498 | 0.6733 | 0.7461 | 0.9074 | 0.8813 | 0.9452 | 0.8043 | 0.1456 | 0.9542 | 0.7947 | 0.8856 | 0.6843 | 0.1284 | 0.8736 | | 0.1975 | 21.0 | 7203 | 0.2519 | 0.6761 | 0.7516 | 0.9084 | 0.8960 | 0.9386 | 0.7992 | 0.1656 | 0.9585 | 0.7989 | 0.8861 | 0.6862 | 0.1412 | 0.8679 | | 0.2356 | 22.0 | 7546 | 0.2506 | 0.6801 | 0.7526 | 0.9087 | 0.8956 | 0.9396 | 0.7972 | 0.1764 | 0.9542 | 0.7991 | 0.8858 | 0.6890 | 0.1486 | 0.8779 | | 0.1838 | 23.0 | 7889 | 0.2510 | 0.6805 | 0.7554 | 0.9088 | 0.8835 | 0.9455 | 0.8068 | 0.1824 | 0.9589 | 0.7978 | 0.8867 | 0.6892 | 0.1516 | 0.8773 | | 0.1576 | 24.0 | 8232 | 0.2511 | 0.6850 | 0.7658 | 0.9091 | 0.8913 | 0.9418 | 0.8021 | 0.2291 | 0.9650 | 0.7996 | 0.8868 | 0.6891 | 0.1765 | 0.8731 | | 0.1504 | 25.0 | 8575 | 0.2505 | 0.6819 | 0.7590 | 0.9092 | 0.8869 | 0.9439 | 0.8077 | 0.1916 | 0.9650 | 0.7992 | 0.8873 | 0.6890 | 0.1587 | 0.8751 | | 0.2196 | 26.0 | 8918 | 0.2530 | 0.6830 | 0.7597 | 0.9095 | 0.8946 | 0.9405 | 0.8035 | 0.1985 | 0.9612 | 0.8010 | 0.8872 | 0.6900 | 0.1610 | 0.8756 | | 0.1781 | 27.0 | 9261 | 0.2509 | 0.6841 | 0.7596 | 0.9101 | 0.8901 | 0.9451 | 0.7993 | 0.2000 | 0.9635 | 0.8010 | 0.8880 | 0.6930 | 0.1635 | 0.8749 | | 0.1578 | 28.0 | 9604 | 0.2485 | 0.6831 | 0.7591 | 0.9102 | 0.8874 | 0.9457 | 0.8064 | 0.1912 | 0.9651 | 0.8008 | 0.8882 | 0.6942 | 0.1585 | 0.8740 | | 0.1931 | 29.0 | 9947 | 0.2495 | 0.6840 | 0.7579 | 0.9105 | 0.8893 | 0.9454 | 0.8042 | 0.1899 | 0.9604 | 0.8016 | 0.8884 | 0.6940 | 0.1580 | 0.8779 | | 0.1582 | 30.0 | 10290 | 0.2486 | 0.6867 | 0.7623 | 0.9106 | 0.8910 | 0.9442 | 0.8061 | 0.2109 | 0.9591 | 0.8022 | 0.8886 | 0.6946 | 0.1697 | 0.8786 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3