--- base_model: openai/whisper-tiny.en datasets: - lalipa/jv_id_asr_split library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: finetune results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: lalipa/jv_id_asr_split jv_id_asr_source type: lalipa/jv_id_asr_split config: jv_id_asr_source split: validation args: jv_id_asr_source metrics: - type: wer value: 0.7835602493955974 name: Wer --- # finetune This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the lalipa/jv_id_asr_split jv_id_asr_source dataset. It achieves the following results on the evaluation set: - Loss: 1.7784 - Wer: 0.7836 - Cer: 0.2535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 3.6903 | 0.2041 | 30 | 2.9875 | 1.0127 | 0.4365 | | 2.533 | 0.4082 | 60 | 2.2360 | 0.8879 | 0.2921 | | 2.0604 | 0.6122 | 90 | 1.9514 | 0.8253 | 0.2670 | | 1.852 | 0.8163 | 120 | 1.8182 | 0.7949 | 0.2581 | | 1.7929 | 1.0204 | 150 | 1.7784 | 0.7836 | 0.2535 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.20.0