--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - lalipa/jv_id_asr_split metrics: - wer model-index: - name: hyperparameter results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: lalipa/jv_id_asr_split jv_id_asr_source type: lalipa/jv_id_asr_split config: jv_id_asr_source split: validation args: jv_id_asr_source metrics: - name: Wer type: wer value: 0.6883827458964245 --- # hyperparameter This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the lalipa/jv_id_asr_split jv_id_asr_source dataset. It achieves the following results on the evaluation set: - Loss: 1.4506 - Wer: 0.6884 - Cer: 0.2050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 3.9694 | 0.1020 | 30 | 3.7782 | 1.8748 | 1.0887 | | 3.3735 | 0.2041 | 60 | 2.9598 | 1.0019 | 0.4254 | | 2.5449 | 0.3061 | 90 | 2.1989 | 0.8820 | 0.3221 | | 1.9987 | 0.4082 | 120 | 1.8648 | 0.8004 | 0.2606 | | 1.7671 | 0.5102 | 150 | 1.6909 | 0.7619 | 0.2312 | | 1.6285 | 0.6122 | 180 | 1.5863 | 0.7336 | 0.2245 | | 1.5475 | 0.7143 | 210 | 1.5251 | 0.7216 | 0.2213 | | 1.4793 | 0.8163 | 240 | 1.4807 | 0.6942 | 0.2035 | | 1.5013 | 0.9184 | 270 | 1.4582 | 0.6904 | 0.2057 | | 1.4438 | 1.0204 | 300 | 1.4506 | 0.6884 | 0.2050 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.20.0