--- language: en tags: - text-classification - hierarchical-classification - common-core-standards license: mit datasets: - iolimat482/common-core-math-question-khan-academy-and-mathfish metrics: - accuracy - precision - recall - f1 library_name: transformers pipeline_tag: text-classification base_model: - google-bert/bert-base-uncased --- # BERT Hierarchical Classification Model This model is a fine-tuned BERT-based model for hierarchical classification of Common Core Standard questions. ## Model Description The model classifies input texts into the following hierarchical levels: - **Grade** - **Domain** - **Cluster** - **Standard** It is based on BERT ("bert-base-uncased") and has been fine-tuned on a dataset of Common Core Standard-aligned questions. ## Intended Use This model is intended for educators and developers who need to categorize educational content according to the Common Core Standards. It can be used to: - Automatically label questions or exercises with the appropriate standard. - Facilitate curriculum alignment and content organization. ## Training Data The model was trained on a dataset consisting of text questions labeled with their corresponding Common Core Standards. ## Training Procedure - **Optimizer**: AdamW - **Learning Rate**: 2e-5 - **Epochs**: 10 - **Batch Size**: 16 ## Evaluation The model was evaluated on multiple classification tasks, including cluster classification, domain classification, grade classification, and standard classification. The performance metrics used for evaluation are Accuracy, F1 Score, Precision, and Recall. Below are the results after training for **10 epochs**: ### Overall Loss - **Average Training Loss**: 0.2508 - **Average Validation Loss**: 1.9785 - **Training Loss**: 0.1843 ### Cluster Classification | Metric | Value | |--------------|---------| | **Accuracy** | 0.8797 | | **F1 Score** | 0.8792 | | **Precision**| 0.8840 | | **Recall** | 0.8797 | ### Domain Classification | Metric | Value | |--------------|---------| | **Accuracy** | 0.9177 | | **F1 Score** | 0.9175 | | **Precision**| 0.9183 | | **Recall** | 0.9177 | ### Grade Classification | Metric | Value | |--------------|---------| | **Accuracy** | 0.8858 | | **F1 Score** | 0.8861 | | **Precision**| 0.8896 | | **Recall** | 0.8858 | ### Standard Classification | Metric | Value | |--------------|---------| | **Accuracy** | 0.8334 | | **F1 Score** | 0.8323 | | **Precision**| 0.8433 | | **Recall** | 0.8334 | ## How to Use ```python import torch from transformers import BertTokenizer, BertConfig from huggingface_hub import hf_hub_download import joblib import importlib.util tokenizer = BertTokenizer.from_pretrained('iolimat482/common-core-bert-hierarchical-classification') config = BertConfig.from_pretrained('iolimat482/common-core-bert-hierarchical-classification') # Download 'modeling.py' modeling_file = hf_hub_download(repo_id='iolimat482/common-core-bert-hierarchical-classification', filename='modeling.py') # Load the model class spec = importlib.util.spec_from_file_location("modeling", modeling_file) modeling = importlib.util.module_from_spec(spec) spec.loader.exec_module(modeling) BertHierarchicalClassification = modeling.BertHierarchicalClassification # Instantiate the model model = BertHierarchicalClassification(config) # Load model weights model_weights = hf_hub_download(repo_id='iolimat482/common-core-bert-hierarchical-classification', filename='best_model.pt') model.load_state_dict(torch.load(model_weights, map_location=torch.device('cpu'))) model.eval() label_encoders_path = hf_hub_download(repo_id='iolimat482/common-core-bert-hierarchical-classification', filename='label_encoders.joblib') label_encoders = joblib.load(label_encoders_path) def predict_standard(model, tokenizer, label_encoders, text): # Tokenize input text inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True) # Perform inference with torch.no_grad(): grade_logits, domain_logits, cluster_logits, standard_logits = model(inputs['input_ids'], inputs['attention_mask']) # Get the predicted class indices grade_pred = torch.argmax(grade_logits, dim=1).item() domain_pred = torch.argmax(domain_logits, dim=1).item() cluster_pred = torch.argmax(cluster_logits, dim=1).item() standard_pred = torch.argmax(standard_logits, dim=1).item() # Map indices to labels grade_label = label_encoders['Grade'].inverse_transform([grade_pred])[0] domain_label = label_encoders['Domain'].inverse_transform([domain_pred])[0] cluster_label = label_encoders['Cluster'].inverse_transform([cluster_pred])[0] standard_label = label_encoders['Standard'].inverse_transform([standard_pred])[0] return { 'Grade': grade_label, 'Domain': domain_label, 'Cluster': cluster_label, 'Standard': standard_label } # Example questions questions = [ "Add 4 and 5 together. What is the sum?", "What is 7 times 8?", "Find the area of a rectangle with length 5 and width 3.", ] for question in questions: prediction = predict_standard(model, tokenizer, label_encoders, question) print(f"Question: {question}") print("Predicted Standards:") for key, value in prediction.items(): print(f" {key}: {value}") print("\n") ``` ## Limitations - The model's performance is limited to the data it was trained on. - May not generalize well to questions significantly different from the training data. ## Citation If you use this model in your work, please cite: ```bibtex @misc{olaimat2025commoncore, author = {Olaimat, Ibrahim}, title = {Common Core BERT Hierarchical Classification}, year = {2025}, howpublished = {\url{https://huggingface.co/iolimat482/common-core-bert-hierarchical-classification}} } ``` ## Connect with the Author - 🤗 Hugging Face: [@iolimat482](https://huggingface.co/iolimat482) - 💼 LinkedIn: [Ibrahim Olaimat](https://www.linkedin.com/in/ibrahim-olaimat-8ba1b4211) ```