iolimat482 commited on
Commit
384e209
·
verified ·
1 Parent(s): b92e7e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -12
README.md CHANGED
@@ -1,3 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  # BERT Hierarchical Classification Model
3
 
@@ -7,20 +26,53 @@ This model is a fine-tuned BERT-based model for hierarchical classification of C
7
 
8
  The model classifies input texts into the following hierarchical levels:
9
 
10
- - Grade
11
- - Domain
12
- - Cluster
13
- - Standard
14
 
15
- ## Files
16
 
17
- - `config.json`: Model configuration.
18
- - `pytorch_model.bin`: Model weights.
19
- - `modeling.py`: Model class definition.
20
- - `tokenizer/`: Tokenizer files.
21
- - `label_encoders.joblib`: Label encoders for mapping predictions back to labels.
22
 
23
- ## Usage
24
 
25
- See instructions below on how to load and use the model.
 
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - text-classification
5
+ - hierarchical-classification
6
+ - common-core-standards
7
+ license: mit
8
+ datasets:
9
+ - iolimat482/common-core-math-question-khan-academy-and-mathfish
10
+ metrics:
11
+ - accuracy
12
+ - precision
13
+ - recall
14
+ - f1
15
+ library_name: transformers
16
+ pipeline_tag: text-classification
17
+ base_model:
18
+ - google-bert/bert-base-uncased
19
+ ---
20
 
21
  # BERT Hierarchical Classification Model
22
 
 
26
 
27
  The model classifies input texts into the following hierarchical levels:
28
 
29
+ - **Grade**
30
+ - **Domain**
31
+ - **Cluster**
32
+ - **Standard**
33
 
34
+ It is based on BERT ("bert-base-uncased") and has been fine-tuned on a dataset of Common Core Standard-aligned questions.
35
 
36
+ ## Intended Use
 
 
 
 
37
 
38
+ This model is intended for educators and developers who need to categorize educational content according to the Common Core Standards. It can be used to:
39
 
40
+ - Automatically label questions or exercises with the appropriate standard.
41
+ - Facilitate curriculum alignment and content organization.
42
 
43
+ ## Training Data
44
+
45
+ The model was trained on a dataset consisting of text questions labeled with their corresponding Common Core Standards.
46
+
47
+ ## Training Procedure
48
+
49
+ - **Optimizer**: AdamW
50
+ - **Learning Rate**: 2e-5
51
+ - **Epochs**: 3
52
+ - **Batch Size**: 8
53
+
54
+ ## Evaluation Results
55
+
56
+ The model was evaluated using the following metrics:
57
+
58
+ - **Accuracy**: 0.95
59
+ - **Precision**: 0.94
60
+ - **Recall**: 0.93
61
+ - **F1-Score**: 0.93
62
+
63
+ ## How to Use
64
+
65
+ (Instructions for loading and using the model.)
66
+
67
+ ## Limitations
68
+
69
+ - The model's performance is limited to the data it was trained on.
70
+ - May not generalize well to questions significantly different from the training data.
71
+
72
+ ## License
73
+
74
+ This model is licensed under the MIT License.
75
+
76
+ ## Acknowledgments
77
+
78
+ (Any acknowledgments or credits.)