class OsSoluConfig: | |
"""A class to hold hyperparameters for the model itself and for the training process.""" | |
batch_size: int # Training data batch size. | |
d_model: int # Hidden size of the model. | |
dropout: float # Probability of dropout. | |
learning_rate: float # Learning rate for the optimiser. | |
ln_eps: float # Layer norm epsilon. | |
max_positional_embeddings: int # Maximum number of positional embeddings. | |
nonlinearity: str # Nonlinearity to use inside MLP block: must be ReLU or SoLU. | |
num_blocks: int # Number of transformer blocks. | |
num_embeddings: int # Number of embeddings. Unsure about this. | |
num_epochs: int # Number of epochs for this run. | |
num_heads: int # Number of attention heads in each attention layer. | |
self_attention_type: str # What type of attention to use: rotary or unidirectional. | |
optimiser_type: str # Optimiser type: SGD, Adam. | |
vocab_size: int # Vocabulary size of the input sequence. Unsure about this. | |
def __init__(self, args: dict) -> None: | |
"""Initialise this config class with values provided by a command-line argument parser. | |
Values are never None here, as we provide suitable defaults in the parser call.""" | |
self.batch_size = args["batch_size"] | |
self.d_model = args["d_model"] | |
self.dropout = args["dropout"] | |
self.learning_rate = args["learning_rate"] | |
self.ln_eps = args["ln_eps"] | |
self.max_positional_embeddings = args["max_positional_embeddings"] | |
self.nonlinearity = args["nonlinearity"] | |
self.num_blocks = args["num_blocks"] | |
self.num_embeddings = args["num_embeddings"] | |
self.num_epochs = args["num_epochs"] | |
self.num_heads = args["num_heads"] | |
self.optimiser_type = args["optimiser_type"] | |
self.self_attention_type = args["self_attention_type"] | |
self.vocab_size = args["vocab_size"] |