rajabmondal commited on
Commit
eb72d1c
·
verified ·
1 Parent(s): e3bbc66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +207 -3
README.md CHANGED
@@ -1,3 +1,207 @@
1
- ---
2
- license: bigcode-openrail-m
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bigcode-openrail-m
3
+ ---
4
+
5
+ # CodeLlama 7B - GGUF
6
+ - Model creator: [Infosys](https://huggingface.co/infosys)
7
+ - Original model: [NT-Java-1.1B](https://huggingface.co/infosys/NT-Java-1.1B)
8
+
9
+ <!-- description start -->
10
+ ## Description
11
+
12
+ This repo contains GGUF format model files for [Infosys's NT-Java-1.1B](https://huggingface.co/infosys/NT-Java-1.1B).
13
+
14
+ <!-- description end -->
15
+ <!-- README_GGUF.md-about-gguf start -->
16
+ ### About GGUF
17
+
18
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
19
+
20
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
21
+
22
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
23
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
24
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
25
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
26
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
27
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
28
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
29
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
30
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
31
+
32
+ <!-- README_GGUF.md-about-gguf end -->
33
+
34
+ <!-- prompt-template start -->
35
+ ## Prompt template: None
36
+
37
+ ```
38
+ {prompt}
39
+
40
+ ```
41
+
42
+ <!-- prompt-template end -->
43
+
44
+
45
+ <!-- compatibility_gguf start -->
46
+
47
+ ## Explanation of quantisation methods
48
+ <details>
49
+ <summary>Click to see details</summary>
50
+
51
+ The new methods available are:
52
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
53
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
54
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
55
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
56
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
57
+
58
+ Refer to the Provided Files table below to see what files use which methods, and how.
59
+ </details>
60
+ <!-- compatibility_gguf end -->
61
+
62
+ <!-- README_GGUF.md-provided-files start -->
63
+ ## Provided files
64
+
65
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
66
+ | ---- | ---- | ---- | ---- | ---- | ----- |
67
+ | [codellama-7b.Q2_K.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes |
68
+ | [codellama-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss |
69
+ | [codellama-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss |
70
+ | [codellama-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss |
71
+ | [codellama-7b.Q4_0.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
72
+ | [codellama-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss |
73
+ | [codellama-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended |
74
+ | [codellama-7b.Q5_0.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
75
+ | [codellama-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended |
76
+ | [codellama-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended |
77
+ | [codellama-7b.Q6_K.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss |
78
+ | [codellama-7b.Q8_0.gguf](https://huggingface.co/TheBloke/CodeLlama-7B-GGUF/blob/main/codellama-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended |
79
+
80
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
81
+
82
+
83
+
84
+ <!-- README_GGUF.md-provided-files end -->
85
+
86
+ <!-- README_GGUF.md-how-to-download start -->
87
+ ## How to download GGUF files
88
+
89
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
90
+
91
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
92
+ - LM Studio
93
+ - LoLLMS Web UI
94
+ - Faraday.dev
95
+
96
+ ### In `text-generation-webui`
97
+
98
+ Under Download Model, you can enter the model repo: TheBloke/CodeLlama-7B-GGUF and below it, a specific filename to download, such as: codellama-7b.q4_K_M.gguf.
99
+
100
+ Then click Download.
101
+
102
+ ### On the command line, including multiple files at once
103
+
104
+ I recommend using the `huggingface-hub` Python library:
105
+
106
+ ```shell
107
+ pip3 install huggingface-hub>=0.17.1
108
+ ```
109
+
110
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
111
+
112
+ ```shell
113
+ huggingface-cli download TheBloke/CodeLlama-7B-GGUF codellama-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
114
+ ```
115
+
116
+ <details>
117
+ <summary>More advanced huggingface-cli download usage</summary>
118
+
119
+ You can also download multiple files at once with a pattern:
120
+
121
+ ```shell
122
+ huggingface-cli download TheBloke/CodeLlama-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
123
+ ```
124
+
125
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
126
+
127
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
128
+
129
+ ```shell
130
+ pip3 install hf_transfer
131
+ ```
132
+
133
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
134
+
135
+ ```shell
136
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/CodeLlama-7B-GGUF codellama-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
137
+ ```
138
+
139
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
140
+ </details>
141
+ <!-- README_GGUF.md-how-to-download end -->
142
+
143
+ <!-- README_GGUF.md-how-to-run start -->
144
+ ## Example `llama.cpp` command
145
+
146
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
147
+
148
+ ```shell
149
+ ./main -ngl 32 -m codellama-7b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
150
+ ```
151
+
152
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
153
+
154
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
155
+
156
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
157
+
158
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
159
+
160
+ ## How to run in `text-generation-webui`
161
+
162
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
163
+
164
+ ## How to run from Python code
165
+
166
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
167
+
168
+ ### How to load this model from Python using ctransformers
169
+
170
+ #### First install the package
171
+
172
+ ```bash
173
+ # Base ctransformers with no GPU acceleration
174
+ pip install ctransformers>=0.2.24
175
+ # Or with CUDA GPU acceleration
176
+ pip install ctransformers[cuda]>=0.2.24
177
+ # Or with ROCm GPU acceleration
178
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
179
+ # Or with Metal GPU acceleration for macOS systems
180
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
181
+ ```
182
+
183
+ #### Simple example code to load one of these GGUF models
184
+
185
+ ```python
186
+ from ctransformers import AutoModelForCausalLM
187
+
188
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
189
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/CodeLlama-7B-GGUF", model_file="codellama-7b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
190
+
191
+ print(llm("AI is going to"))
192
+ ```
193
+
194
+ ## How to use with LangChain
195
+
196
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
197
+
198
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
199
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
200
+
201
+ <!-- README_GGUF.md-how-to-run end -->
202
+
203
+ <!-- footer start -->
204
+ <!-- 200823 -->
205
+
206
+
207
+