--- license: apache-2.0 library_name: peft tags: - unsloth - generated_from_trainer base_model: mistralai/Mistral-7B-v0.3 model-index: - name: mistral_7b_v_Magiccoder_evol_10k_reverse results: [] --- # mistral_7b_v_Magiccoder_evol_10k_reverse This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3236 | 0.0261 | 4 | 1.3076 | | 1.2244 | 0.0523 | 8 | 1.2947 | | 1.5369 | 0.0784 | 12 | 1.4240 | | 5.2765 | 0.1046 | 16 | 3.1163 | | 3.5831 | 0.1307 | 20 | 1.7562 | | 1.7895 | 0.1569 | 24 | 1.7124 | | 1.914 | 0.1830 | 28 | 1.7797 | | 2.9106 | 0.2092 | 32 | 2.3285 | | 1.5011 | 0.2353 | 36 | 1.4598 | | 1.4755 | 0.2614 | 40 | 1.4380 | | 1.4568 | 0.2876 | 44 | 1.3801 | | 1.2952 | 0.3137 | 48 | 1.3155 | | 1.3008 | 0.3399 | 52 | 1.2782 | | 1.2098 | 0.3660 | 56 | 1.2382 | | 1.2073 | 0.3922 | 60 | 1.2299 | | 1.2424 | 0.4183 | 64 | 1.2237 | | 1.1401 | 0.4444 | 68 | 1.2220 | | 1.1368 | 0.4706 | 72 | 1.2071 | | 1.1203 | 0.4967 | 76 | 1.2119 | | 1.21 | 0.5229 | 80 | 1.2026 | | 1.12 | 0.5490 | 84 | 1.1905 | | 1.199 | 0.5752 | 88 | 1.1893 | | 1.2302 | 0.6013 | 92 | 1.1889 | | 1.2382 | 0.6275 | 96 | 1.1797 | | 1.1521 | 0.6536 | 100 | 1.1765 | | 1.1563 | 0.6797 | 104 | 1.1728 | | 1.1676 | 0.7059 | 108 | 1.1718 | | 1.0429 | 0.7320 | 112 | 1.1642 | | 1.1303 | 0.7582 | 116 | 1.1660 | | 1.126 | 0.7843 | 120 | 1.1641 | | 1.1603 | 0.8105 | 124 | 1.1598 | | 1.146 | 0.8366 | 128 | 1.1587 | | 1.1689 | 0.8627 | 132 | 1.1547 | | 1.1046 | 0.8889 | 136 | 1.1533 | | 1.201 | 0.9150 | 140 | 1.1565 | | 1.0665 | 0.9412 | 144 | 1.1566 | | 1.0795 | 0.9673 | 148 | 1.1561 | | 1.2229 | 0.9935 | 152 | 1.1558 | ### Framework versions - PEFT 0.7.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1